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Abstract
A huge amount of webinars are held online for various purposes, for instance, educa-
tion, entertainment, and business. Besides webinars, meetings are being held online in
different sectors and companies. It is common to find more than one webinar or meet-
ing discussing the same topic. On the other hand, multiple topics could be discussed
in a single webinar or meeting. This implies if users are interested in finding relevant
formation on a certain topic, then they may have to go through each and every webinar
or meeting content to identify the topic. Performing this manually is highly inadvisable
as it is time consuming and inefficient. Therefore, it is desirable to have an automated
system that efficiently detects the topics discussed in webinars or meetings. Given this
fact, in this research, an effort has been made to build a Topic Detection and Labeling
(TDL) system for online meetings and webinars.

The proposed TDL system is designed and implemented with the purpose of solving
the two main research questions associated with this study. The first question is how to
customize a clustering algorithm for single-document topic detection and find a way to
automatically determine the optimal number of topics without user involvement. The
other is how to use a KB to give semantic labels to identified topics. The TDL system
addresses the first research question by using an agglomerative clustering technique with
a variant of the elbow algorithm. The distance function used in the clustering algorithm
is defined by combining an euclidean distance with a newly defined distance function
named in transcript distance which determines the similarity between sentences by
their position in the transcript. The elbow algorithm is used as a technique to determine
optimal number of topics. The second research question is solved by integrating an
external knowledge base, i.e. DBpedia, with the system to help in identifying relevant
labels for topics. The proposed system is composed of Topic Detection (TD) and Topic
Labeling (TL) core components.

The evaluation of the TD component proved that combining euclidean distance function
with in transcript distance function results in better performance than using any of
these functions alone. In addition, the TD system showed slightly better quality and
speed when it is built with Word2Vec word embedding model than with Glove. In the
case of TL, the evaluation showed that all the four properties used for ranking of can-
didate labels, namely, popularity, term specificity, topic specificity, and coherence, are
required to gain better performance. Each of these properties play a vital role in deter-
mining the importance of a candidate label to a topic.

Key Words: Topic detection, Topic labeling, Topic modeling, Ontology, DBpedia, We-
binars, Clustering, Hierarchical agglomerative clustering, Word embedding, WordToVec,
Glove, Text similarity.
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1. Introduction

1.1. Overview

Different medias, such as text, audio and video are used to share information or knowl-
edge over the internet. Nowadays, video and audio streams have become popular mul-
timedia as they enable people to present content in different forms to their audiences.
One way of sharing information using those medias is through a webinar (i.e. web-based
seminar) which is a term used to describe seminars held over the web and it can also
be referred to as webcasts, online trainings/classes/events. Webinars can be either a
paid or free presentations, demonstration, discussion or any other form of sessions. In
various sectors, people make use of different applications to have either online meetings
and webinars or to distribute pre-recorded videos. For instance, GoToMeeting1 and Go-
ToWebinar2 are applications which are used to let people host online events.

According to the Business to Business (B2B) Content Marketing Research of 2017 by
the Content Marketing Institute and marketingProfs3, 58% of B2B marketers use webi-
nars as a content marketing tactic. As a result of this, there is an enormous amount of
online videos and webinars available on the internet. It has been challenging to search
for webinars hosted in specific domains or topics as there are webinars almost in any
field. Besides, searching for those webinars and meetings manually is time consuming
and inefficient. Therefore, in order to access the relevant information enclosed in webi-
nars and meetings it is desirable to have an automated searching system.

In addition to the fact that users intend to use text to search for video and audio
files, in the field of data analysis and data science it is quite effective and easier to work

1https://www.gotomeeting.com
2https://www.gotowebinar.com
3http://contentmarketinginstitute.com/wp-content/uploads/2016/09/2017_b2b_Research_

FINAL.pdf
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1. Introduction

directly with text data instead of using the actual audio or video file. Hence, various
automatic speech recognition systems are available to create transcriptions of video and
audio files. The transcriptions can be used as input to different text-based data analysis
systems to get relevant information discussed in a webinar.

Various sectors or companies which provide webinars intend to reach as many users as
possible either online or by sharing pre-recorded webinars and users watch these recorded
webinars and meetings if they want to catch up on an event they couldn't attend online
or to find a set of webinars discussing related topics. Hence, besides just providing an
automated system, it would be more desirable to make the system a semantic-based text
analysis system that identifies the topics discussed in a webinar based on its semantics
so that users can easily find the exact webinars they are looking for. This will make both
sides (i.e. the webinar providers and users) beneficial time and money wise.

1.2. Problem Analysis

As discussed above, in order to address the problem of accessing relevant information
in a huge set of webinars covering multiple domains or fields, it is important to have
an automated system that identifies the topics efficiently. There are various techniques
available to process natural language text. Among the most commons are Information
Retrieval (IR), classification, clustering, summarization, sentiment analysis, Topic De-
tection (TD), and Topic Labeling (TL). Even though all these methods are designed to
accomplish different tasks, they have one thing in common which is capturing informa-
tion out of a text corpus easily and effectively. TD, one of the text analytics techniques,
is a process of identifying topics discussed in a text object [1]. TL is a process of assign-
ing representative terms as labels to identified topics that well interpret the meaning of
the topics.

In addition to providing the result of the TD system to users so that they can see
the list of topics covered in a specific webinar, the result can also be integrated with
other text analysis techniques to improve their performance. For instance, if we take a
scenario where users try to retrieve information out of a transcript of a webinar by using
a keyword-based IR system, they may miss relevant documents if they don’t contain the
exact search keywords. However, if we integrate the result of a TD system with the
IR system then there will be higher probability of returning documents that don’t share
exact keywords but are semantically similar. The result of topic modeling can also be
used for text summarization [2].

Moreover, since multiple topics can be discussed in a single webinar or meeting, to
find a specific topic in a webinar users have to scan the video to locate the exact po-
sition. However, this would be easier if we could use a topic detector to point to the
exact location in the video by using topic boundaries and their labels.

2



1.3. Research Questions

In order to build such TD systems, numerous approaches have been proposed so far. The
most common ones are probabilistic topic models like Latent Dirichlet Allocation (LDA)
[3]. However, there are still a lot of research gaps in this area as there is a lot to be im-
proved. One of the main challenges in the process of TD is to find the optimal number of
topics. Most of the existing methods let the user decide the number of topics they want
to get out of the transcripts and some try to use some methods to determine the number
of topics automatically but the result is not always accurate. The other important issue
with TD is to determine the boundaries of topics in a document/corpora. Since most
TD systems as in LDA [3] use bag of words which don't consider the order of words/sen-
tences, it is quite difficult to locate where a specific topic starts and ends in a document.

Regarding TL, it is recently becoming an active research topic with some research works
which propose different approaches [4, 5, 6, 7, 8]. However, there is a lot to be im-
proved with these methods as each of them has their own drawbacks. In addition,
these labeling algorithms may not work well with the TD approach proposed in this
research. Therefore, it is appropriate to design and implement a TL component which
finds labels for the topics generated with the TD component proposed in this thesis work.

To sum up, the motivation behind this thesis work is to propose a TDL system for
online webinars and meetings by taking into account the semantic-similarity among sen-
tences of a transcript with the intention of addressing the issues with the existing TDL
systems. Figure 1.1 depicts an example scenario how the proposed system will behave
against a text document input. In this example, three topics (with their corresponding
boundaries) are detected and for each one of them a possible list of candidate label
terms are generated.

1.3. Research Questions

The main goal of this thesis work is to design and implement a TDL System for online
transcripts of meetings and webinars by integrating machine learning (i.e. cluster-
ing) algorithms with external KB. Besides evaluating the system with a test corpus, as
optional, a graphical prototype will be developed which will be used for visualizing topics
generated from meetings and webinars.

Thus the key research questions that will be addressed in this thesis work are stated
as follows:

1. How to use sentence clustering algorithm for single-document topic detection?

a) How to adapt an existing clustering algorithm in order to divide a document
into segments or topics ?

b) How to determine the optimal number of topics?

2. How to use a Knowledge-base to give semantic labels to identified topics?

3



1. Introduction

Figure 1.1.: An example scenario to show how the proposed system is intended to work

a) How to generate candidate terms to represent an identified topic?

b) How to assign weight to each candidate term used as a label to a topic in
order to rank them based on importance?

1.4. General and Specific Objectives

The overall objective of this master’s thesis research is to propose semantic-based auto-
matic TDL system for webinars and meetings. In order to accomplish the aforementioned
general objective, the following specific objectives are devised.

• Asses the capabilities of the existing TD and TL systems

• Adapt an appropriate clustering method that can be used to cluster sentences of
transcripts

• Identify the appropriate method used in clustering for determining the number of

4



1.5. Scope of the Study

optimal clusters which can be used in this research for accurately identifying the
right number of topics in a transcript.

• Choose the appropriate external knowledge base which can be integrated with the
TDL system to support the design and implementation of the TL component

• Propose a method which can generate candidate labels for identified topics and
rank them according to their importance to their respective topic

• Build the actual TDL system by integrating the machine learning (clustering)
algorithm with the chosen external KB

• Gather or prepare test data which can be used for evaluating the performance of
the system

• Choose an appropriate system measuring metric which can be used for measuring
the value of the proposed approach

• Test the implemented TDL system against the prepared test data and measure its
relevance using the chosen metrics and compare its result to existing approaches

1.5. Scope of the Study

This master’s thesis research has been conducted to detect topics discussed in webinars
or meetings using their transcripts. The process of generating transcripts of webinars is
outside the scope of the research. Rather, already available transcripts are used as input
to test the proposed system. The TDL process is designed to work only for one document
at a time, i.e. it is a single-document topic detection. Therefore, multi-document topic
detection is not part of the scope of the thesis. Moreover, creating correlation among
identified topics of a document is not considered in this master’s thesis.

1.6. Methodology

In favor of meeting the outlined general and specific objectives of this research, different
methodologies have been applied.

• Literature Review: Literature reviews will be conducted to acquire enough un-
derstanding of the components of the TDL system. Specifically, literatures in the
area of automatic TD, TL, linked data sets or ontologies, word embedding, and
clustering. Reading literatures and related works helps to gain the required knowl-
edge on a certain subject and also assists in identifying the right methods and
tools for implementing the different components of the system. Hence, different
research papers, books, and web sites will be reviewed.

5



1. Introduction

• Data collection: Two sets of data are required for this study, a set of webinar
transcripts for conducting the experiment for the whole system and KB for testing
the TL component. Since it is easier to find transcripts of TED talks4, the data
source for this study will be the transcripts from TED talk videos.

• Implementation Method: In order to accomplish the objectives of the research,
different methods and tools will be engaged in the implementation of the system.
Python is known for its extensive libraries which provide support for different data
analysis tasks. This led Python to become a widely used programming language
to develop Machine Learning (ML) systems in the field of data science or data
analytics. Due to the reason that clustering, one of ML algorithms, is used in this
research, the implementation of the proposed system will be written using Python.
The common libraries like Scipy5, Numpy6 and Scikit-learn7 will also be used to
facilitate some of the tasks in the development process.

For the sake of showing the prototype of the system in a user friendly way, a
website will be developed using Flask. The SPARQL (RDF query language) is
used to access the concepts in the DBpedia data set.

• Testing and Evaluation: To evaluate the performance of the proposed TDL
approach, the two core components of the system, namely TD and TL, will be
tested separately using different data sets. Finally, the whole system will be as-
sessed based on the research questions and the derived requirements of the system.
For evaluating the TD component, v measure and purity metrics will be used and
for the TL component precision with human judgment will be applied.

1.7. Application of the Study

Besides being a research to fulfill the requirement of the Master’s program, the result of
this study is believed to be used either as an input for further researches or can be put
into use in different fields. The possible areas where the developed TDL system can be
used are:

• IR: TDL systems can play a vital role when they are integrated with text search
engines. For instance, the proposed system can be used to facilitate the process
of querying transcripts of webinars or any kind of text documents.

• Webinar Classification: Extracting the existing topics and determining the ac-
curate number of topics in a document helps in increasing the quality of webinar
classifier algorithms (or text document classifier algorithms in general).

4https://www.ted.com
5https://www.scipy.org
6http://www.numpy.org
7http://scikit-learn.org/stable/
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• Webinar Recommendation: Identifying the topics discussed in webinars and
representing the webinar with there respective topics (or labeled topics) will im-
prove the capability of webinar recommendation systems in recommending the
appropriate webinars to users.

• Sentiment Analysis (SA): As a research [9] indicates, it is beneficial to first detect
topics discussed in documents and then apply each tasks of the sentiment analysis
over the topics instead of directly running the SA algorithm to the documents.

• Document Clustering: TDL systems can bring advantages in supporting qual-
ity clustering as they do in classification. Most importantly, running clustering
algorithms over the representative labels of topics (clusters) is much better than
running it on the original set of documents because of resource requirement issues.

• Document Visualization: In visualizing large volume text corpora, having a high
level summary of documents is required and TDL system can be used in the process
of generating such summaries.

• Text Summarization: Having the topics of a document identified helps in de-
termining the content of the summary of the document. Specifically, since the
proposed approach in this thesis work is designed in a way it can detect bound-
aries of topics as well, it will be easier to build a text summarizer system up on the
TDL system. For further illustration on this matter, for instance by selecting top
relevant sentences from each topic and appropriately merging them, a summary
for the entire document can be made.

• Linguistic Understanding: The proposed TDL system can also be explored in the
area of cognitive science for supporting the process of understanding a particual
natural language. For instance, some research works have been undertaken to
understand word correlations in a set of documents written in a certain language
[10].

• Qualitative Analysis: Qualitative studies such as media or social-network anal-
ysis, opinion mining, and sociological researches can get the benefit of the result
of this thesis work to capture the topics discussed in documents.

• Multilingual modeling: Since the proposed approach is language independent,
i.e. works with transcripts written in any language with a little or no modification,
it can be integrated in any of its application areas regardless of the language
considered.

• Further Research: In addition to directly being used in different Natural Language
Processing (NLP), data mining or machine learning tools, the research result can
also lead to further research ideas in the same or closely related topics or domains.
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1. Introduction

1.8. Outline of the Thesis

The current chapter was designed to give an overall introduction to the master’s thesis
topic with the purpose of enabling the readers capture the core points that initiated the
work and also to state the research questions that are expected to be answered as the
result of the research work. The rest of the chapters in this thesis report are organized
as follows:

Chapter 2 - Literature Review: This chapter presents the extensive literature re-
views conducted to get enough insights on the master’s thesis topic.

Chapter 3 - Requirement Analysis: The assumptions taken, the use case, functional
and non-functional requirements driven for the achieving the objective of the study are
discussed in this chapter.

Chapter 4 - Related Work: In this chapter, the approaches, contributions, and limi-
tations of the research works conducted by various researchers in the area of TD so far
will be discussed.

Chapter 5 - Design of the Proposed TDL System: In this part, the general frame-
work, concept and design of the proposed approach will be discussed in detail.

Chapter 6 - Implementation: The methods and choices taken for the implemen-
tation of the designed algorithm will be presented in detail.

Chapter 7 - Experiment and Evaluation: We will discuss the experiment procedure
followed and the available evaluation metrics used to evaluate the proposed approach
and then present the result of the evaluation.

Chapter 8 - Conclusion and Future Work: In this chapter, the conclusions drawn
from the research, the limitations and contributions of the study, and the directions for
further possible future works related to this thesis topic are presented.
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2. Literature Review

In this chapter, extensive review of literature on the general concepts which are somehow
involved in the design and implementation of the proposed Topic Detection and Labeling
(TDL) system is presented. The review covers the concepts such as techniques for
generating word embedding, higher-level text (i.e. phrase, sentence, and document)
embedding, text similarity measures, clustering, and ontologies. In the proposed system,
higher level text embedding is required to represent sentences in a vectorized form and
an appropriate text similarity measure is used to compute similarity between sentences
for generating clusters or topics. DBpedia is used in the design and development of
the Topic Labeling (TL) component. Therefore, this literature review will provide the
information that readers require to understand the concept of the problem that is being
addressed in the realm of this thesis work and to easily follow the topics that are discussed
in the rest of the chapters. To this end, the conducted review will be discussed in the up
coming subsections with a summary at the end to give an over all conclusion on points
addressed in this chapter.

2.1. Text Similarity

In order to answer the first research question formulated in this thesis work, which is
exploring the advantage of sentence clustering for Topic Detection (TD), it is found to
be valuable to conduct a review on available text embedding and similarity measures
given the fact that most clustering techniques are designed to be effective when they are
applied to numerical data sets. Therefore, in this section, the review of word embedding
algorithms and higher level text embedding techniques, with focus on unsupervised ones,
will be presented. Moreover, the text similarity techniques which rely on text embeddings
will be discussed.

9
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2.1.1. Word Embedding

Word embedding is an arrangement of dense real-valued vectors representing the syntac-
tic and semantic information of words along with their context so as to enable computers
handle large volume text data. A word embedding for a text is a learned representation
where words occurring in the text with the same meaning are given a similar represen-
tation. Relations between words can be derived by training word embedding models.
Moreover, word embeddings are the base for deep learning algorithms to work with
challenging NLP problems. Most widely known word embedding models learn word vec-
tor representations using very large corpora. However, it is also possible to train word
embeddings on knowledge graphs.

Why Word Embedding

Most ML algorithms and almost all Deep Learning (DL) architectures are not designed
to process plain text in their raw form rather to work with numeric data. It is challenging
to extract information out of a big data which is encoded in text format. Traditionally,
NLP systems treat words as discrete atomic symbols, for instance, the word “computer”
and “machine” can be encoded using some arbitrary numbers “537” and “143” respec-
tively regardless of their semantic similarity. In order to address this issue of processing
large amount of text data without losing the natural semantics of the text in the data,
various word embedding techniques have been proposed so far. These word embed-
ding techniques are designed in such a fashion that they can handle huge text data by
mapping a word using a dictionary to a vector.

Different Types of Word Embeddings

Different experts of NLP, ML, and lately DL have conducted various research in the
area of word embedding so far and presented their approach with the obtained result. In
this section, the overview of the well known approaches will be presented. We will start
with discussing the simplest vectorization method called one-hot and continue with the
rest by dividing them into two categories as frequency-based and prediction-based word
embeddings.

One-hot Vectorization: The simplest embedding method is to represent a word using
a one-hot vector composed of 0s and 1s where 1 indicates the occurrence of the
word and 0 means otherwise. One-hot representation is a way of encoding cate-
gorical data which has finite set of label data. Categorical data are variables that
contain label values rather than numeric values. For example, given the sentence
“Python for data science”, the dictionary can be [“Python”, “for”, “data”, “sci-
ence”] and the one-hot representation of the word “data” is [0, 0, 1, 0] whereas
that of “science” is [0, 0, 0, 1]. One of the main drawbacks of one-hot embedding
is that thousands or millions of dimensions are required when dealing with big data
as it follows sparse word representation. The other crucial issue is that models
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based on this embedding technique are not capable to handle words that do not
occur in the training data [11].

Frequency based Embedding: Here, the common word embedding methods such as
count vector, Term Frequency/Inverse Document Frequency (TF-IDF), and co-
occurence vector which are based on frequency of tokens or words are discussed.

• Count Vector: It is a process of creating a matrix M of K X N for a corpus
of documents where K is the total number of documents and N is the total
number of unique tokens in the corpus. A value in the matrix M at the
position (i, j) where i ∈ (1,K) and j ∈ (1, N) represents the frequency of
the token at column j in the document at row i. A row can be referred to
as document vector and a column as word vector. Instead of frequency, it is
also possible only to consider the presence of a token while constructing the
matrix. Moreover, for the sake of shrinking the size of the vocabulary, only
the most frequent terms in the corpus are considered. For instance, given
a corpus C composed of two documents d1 ={Reviewing word embeddings.
Word embeddings for ML.} and d2 = {NLP vs ML. ML vs DL.} - C={d1,
d2}, the matrix M which shows the count of occurrences of words in C, using
the count vector method, is shown in Table 2.1 below.

Reviewing word embeddings for ML NLP vs DL
d1 1 1 1 1 1 0 0 0
d2 0 0 0 0 1 1 2 1

Table 2.1.: A simple example for count vector

• TF-IDF vectorization: TF-IDF assigns the relative frequency of a word in
a document with regard to its inverse frequency in the entire corpus. The
intuition behind TF-IDF is to give less weight to words that are common in
the document collection and higher wight to those that occur only in some
documents. Consider a corpus C, a document d ∈ C and a term t ∈ d, the
TF-IDF value for the term t in document d is computed using the formula
shown in Equation 2.1 [12].

TF − IDF (t, d) = TF (t, d) ∗ IDF (t) (2.1)

where

TF =
(Number of times term t appears in d)

(Number of terms in d)

and

IDF = log
(number of documents in C)

(number of documents in C a term t has appeared in)
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Despite its simplicity, TF-IDF doesn’t capture the position of a term in a
document and it also doesn’t consider semantics of terms. Moreover, terms
with high TF-IDF value in a document may not make sense with the topics
discussed in the document.

• Co-Occurrence Vector: The idea that motivates this method is terms that
tend to occur together have similar contextual meaning. The two main con-
cepts of this approach are contextual window and co-occurrence . Contextual
window is a slice of text specified by number and direction. Direction can be
either right, left or around. For instance, the contextual window of 3 (around)
for some term t means a segment of the text composed of 3 terms to the
left of t and another 3 terms to the right of t. Once the context window
is specified, the co-occurrence between two terms t1 and t2 can be defined
as the number of times they appeared together in the context window. The
core advantages of this method are it preserves semantics of terms, it uses
singular-value decomposition (SVD), and once computed can be used any-
time. On the contrary, the main disadvantage of this approach is it consumes
a huge amount of memory to store the co-occurrence matrix.

Prediction based Embedding: The vectorization methods we have discussed so far
are all deterministic. They are not capable of predicting words. With the intention
of addressing the limitations with these methods different scientists have proposed
methods which are based on neural networks. Unlike frequency-based embeddings,
prediction based embeddings use neighboring words to predict a target word us-
ing learned dense embedding vectors [13].The two most common neural network
based word embeddings are Glove and Word2Vec. In addition, a technique called
“Embed, encode, attend, predict” which is based on DL is proposed.

• Word2Vec It is the most widely used neural network based word embedding
relying on the assumption that words that occur together in similar contexts
have similar meaning. Word2Vec comes with two alternative flavors Contin-
uous Bag of words (CBOW) and skipgram model introduced in 2013 and
has been a base for different NLP tasks [14]. The authors improved this
method again in order to enhance its training speed and accuracy [15]. The
CBOW architecture is based on the idea that a target word can be predicted
by looking at some of the words that come before and after this specific
target word as depicted in Figure 2.1a. It is named as CBOW because it
follows the continuous representations where order is of no importance. On
the contrary, skip-gram model, which is seen as the inverse of the CBOW
method as shown in Figure 2.1b, predicts the neighboring words from the tar-
get word instead. In order to handle antonym relationships, a research was
conducted which proposes a method to determine if two words with similar
vector representations are antonyms or synonyms [16].

Despite its contributions, there are various challenges with Word2Vec such
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(a) cbow architecture (b) skip-gram architecture

Figure 2.1.: Word2vec architectures[15]

as:

– Inability to handle previously unknown words: Words that do not occur
in the training data set (in the vocabulary of the the Word2Vec model)
are assigned no vector representation as it is difficult for the model to
interpret the word. Therefore, while using this model to build any ap-
plication, if new words appear, then they will either be removed or be
assigned random numbers. This negatively affects the performance of
the application.

– Not capable to capture morphological similarity : Humans are able to
guess if a word ends with the syllabus “less” there is a high probability
that it means “a lack of something”. However, since Word2Vec repre-
sents words as independent vectors, it is challenging to represent words
of methodologically rich languages like German1.

– Scalability issues: If it is required to make the model cross-lingual, new
embedding matrices have to be added.

• Glove Glove [17] is the second mostly used word embedding technique next
to Word2Vec. The authors of Glove believe that the Word2Vec embedding
doesn’t consider the global co-occurrence of words and focuses only on analo-
gies. Therefore, there idea is to fill this gap by taking into consideration global
word co-occurrence statistics explicitly when generating vectors for words. In

1http://blog.aylien.com/word-embeddings-and-their-challenges/
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Glove co-occurrence probability is taken as a measure for similarity of words.
Since both Glove and Word2Vec relys on the same assumption which states
that words with similar meaning intend to occur in the same context, the
result returned by both models are very much similar [18].

• FastText: This approach is introduced as an improvement over Word2Vec
in 2017 by the AI research team at Facebook [19]. FastText is based on
the concept modular embeddings which focuses on capturing the similarity
between morphologically related words. The idea is to generate vectors for
sub parts of a word and then combining these vectors using a composition
function to form the embedding for the word instead of taking the word as a
single entity and computing its vector representation directly. The algorithm
is based on skip-gram architecture with negative sampling which was pro-
posed previously for Word2Vec embedding. The core advantages with this
embedding method are the capability of using smaller vocabulary with big
corpora and capturing morphological information of words. Moreover, this
approach motivates the application of embeddings to a more higher struc-
ture such as phrase or sentence embeddings because this method shows that
embeddings can be composed by combining vectors of word parts to a single
vector for the whole word.

• WordRank: This embedding algorithm is based on context window and
designed to be trained on a corpora [20]. This Embedding model works by
ranking the context words of each target word so as to optimize its word
representations. This makes the approach more subtle for retrieving most
similar words to a target word.

2.1.2. Higher Level Text Embedding

In order to compute similarity between text segments, most text similarity measures
require the input text to be represented using vectors. To this end, different approaches
have been proposed so far to represent more higher level structures such as phrases,
sentences, paragraphs and documents using vectors. Most of these approaches are
based on the unsupervised word embedding techniques discussed above. Therefore, in
this section, we discuss higher level text embedding methods.

Vector Space Model (VSM): It is a model which represents a document using a
vector with the size of the vocabulary where each value in the vector indicates
a weighted frequency of a certain word in the document. Cosine similarity and
dot product are the most common similarity measures that are used with VSM
document representation scheme.

Embedding Centroids: One way to compute embeddings for high level structure of
text is to compute the centroid of the vectors of all the words in the text. It is
also possible to use VSM vectors as coffecients and compute weighted centroids.
However, using the centroid method may result in loss of information [18].
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Averaging Word Embeddings: The simplest method to generate a vector represen-
tation for a sentence/document is using a specialized word embedding algorithm
which takes the average of the vectors of the words existing in the sentence or
document [21, 22, 23, 24, 25]. However, with these method the actual semantics
of the sentences are not captured because it loses the order among words of a sen-
tence and also it gives all words equal importance. Another approach to compute
a vector of a sentence is to use weighted mean of vectors of the words in the text
by using the TF-IDF value of the words as weights [26]. Despite the ability of this
approach in identifying relevant words in a sentence, it is still not able to capture
the order of the words and this may lead to having two sentences with different
meaning being represented with similar vectors just because they contain similar
set of words.

Doc2Vec: Doc2Vec [27] is a paragraph level embedding proposed by the authors who
first introduced Word2Vec [14]. Doc2Vec has the same structure as Word2Vec
with the exception that Doc2Vec adds a global vector to the context representation
of a document. However, Doc2Vec embedding does not work well with cosine-
similarity metric as compared to other embedding techniques do and for this reason
it is rather used as feature extraction method (i.e. the vectors generated using
Doc2Vec are used as feature vectors) in ML algorithms [18]

Doc2VecC: It also follows the technique discussed before called averaging word em-
beddings to get document embedding where the word embedding is trained specif-
ically to be averaged for document embedding purpose [28]. The main difference
between Doc2Vec and Doc2VecC is the former trains its document embeddings
where as the later just uses the trained Word2Vec embeddings directly for averag-
ing instead. Moreover, Doc2VecC adds a corruption component which enables the
model remove random words from the training data so as to improve its model’s
generality [25].

Word Mover’s Distance (WMD): While all the document similarity methods dis-
cussed here are based on assigning embeddings to each document by composing
word embeddings, WMD doesn’t compute vector representations for each text
item (document, phrase, sentence) instead uses a distance function to compute
similarity between two documents by taking two sets of word embeddings one for
each document [29]. Since the function used by WMD is computationally expen-
sive it is not recommended to use it for applications like clustering that requires
computing similarity between each pair of sentences [18].

Skip-thoughts: This method learns sentence embeddings by using the relations be-
tween consecutive sentences in the training data set by utilizing DL architecture
[30]. It’s learning scheme is similar to that of Word2Vec’s skip-gram architecture.
It takes the neighboring sentences as the context of the target sentence with loss
function for computing prediction error and a stochastic gradient descent (SGD)
method for optimization purpose.
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Sent2Vec: This sentence embedding [31] follows the same technique as Doc2VecC
except its optimization procedure focuses more on sentences or paragraphs compo-
sitionality while Doc2VecC’s optimization is specifically designed for full document
embeddings.

Embed, encode, attend, predict: This is an approach based on bidirectional Re-
current Neural Networks (RNNs) to generate vector matrix for sentences using
the vectors of the words in the text2. The method starts with computing word
embeddings for words and proceeds with representing sentences by employing an
attention mechanism. The actual steps used in learning the sentence embeddings
are discussed as follows:

1. Embed: The first step is to create an embedding table to represent words
or tokens using vectors and for such purpose any of the appropriate methods
from the word embedding techniques discussed so far can be chosen.

2. Encode: In this step, taking the word vectors as an input, a sentence matrix
is computed where each row represents a token or a word in the sentence. A
bidirectional RNN which combines the result of a forward pass and a back-
ward pass is used to generate the sentence matrix.

3. Attend: In order to pass the sentence matrix as an input for the prediction
phase, it is required to reduce it to a single vector representation. To that
end, the current step, the Attend step, performs the matrix reduction process
by making use of an attention mechanism. Since the attention mechanism
takes context into consideration, this approach doesn’t entertain the com-
mon problem of losing information that occur due to reduction. Researchers
in the area of NLP and ML have introduced methods to reduce two sentence
matrices [32] in to a single vector and a single sentence matrix in to a vector
[33]. The attention method is a pure reduction operation because instead of
deriving a context from the vector input, it learns a context vector using the
model.

4. Predict:This step uses the generated single vector in the Attend step to
acquire the final intended representation of the text or sentence which can
be a class label, a vector, etc.

2.1.3. Text Similarity Measures

Text similarity measures are one of the core components which play important roles in
text-based applications such as TD, classification, clustering, IR, and summarization.
Text similarity metrics ranges from word similarity methods up to document similarity
methods. Computing word similarity is a base for all other higher level text similar-

2https://explosion.ai/blog/deep-learning-formula-nlp
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ity techniques such as phrase, sentence, paragraph, and document similarity measures.
These metrics can be broadly categorized as string-based similarity, corpus-based similar-
ity, and knowledge-based similarity measures [34]. The string-based similarity is further
divided into character-based and term-based similarity measures. Since one of the re-
search questions being addressed in this thesis work is adapting a clustering technique
for TD process and the sentences being clustered are represented in vectorized form,
we discuss the similarity measures that work well for this scenario. Therefore, here we
only present the term-based similarity measures as those are the ones which are very
commonly being used by various clustering algorithms.

The well known term-based similarity measures consist of block distance, cosine simi-
larity, dices coefficient, euclidean distance, jaccard similarity, matching coefficient, and
overlap coefficient [34]. The description of these metrics is depicted in Table 2.2.

Table 2.2.: Text Similarity Measures

Metric Description
Block distance aka Manhattan distance, boxcar distance, absolute value dis-

tance, L1 distance, city block distance. computes the traveling
distance from one point to another in a grid like path. The
block distance between two points is the sum of the differences
of their corresponding components or coordinates. It is not
recommended for k-means clustering [35]

Cosine similarity computes similarity between two points or vectors by taking the
cosine of the angle between them

Dices coefficient defines the distance between two strings as twice the number
of terms that are common for both strings divided by the total
number of terms in both strings

Euclidean distance aka L2 computes square root of the sum of squared differences
between corresponding components of the two points. Rec-
ommended for k-means clustering [35] and very popular with
hierarchical clustering algorithms as well

Jaccard similarity defines the distance between two strings as the number of terms
that are common for both strings divided by the total number
of terms in both strings

Matching coeffi-
cient

computes similarity between two vectors by counting the num-
ber of similar terms they have (i.e. dimensions on which both
vectors are non zero)

Overlap coefficient same as Dice’s coefficient except it considers two strings exactly
the same if one is subsumed by the other
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2.2. Clustering

Clustering is unsupervised machine learning which aims at grouping together similar
elements of a data set in to the same cluster and those dissimilar in to different clusters.
It is called among the unsupervised learning schemes because it doesn’t make use of
pre-labeled data in order to train its model and learn from its experience to cluster
new observations. Mostly, clustering quality is measured by its intra-connectivity (i.e.
density of a cluster) and inter-connectivity (i.e. connectivity between different clusters)
values. A high intra-connectivity indicates a quality clustering arrangement because the
observations categorized within the same cluster are highly related to each other whereas
a low inter-connectivity shows that individual clusters are dissimilar to each other.

2.2.1. Types of Clustering Techniques

There are different ways to categorize clustering techniques and algorithms. Generally,
a clustering can be called as soft or hard depending on how an observation is assigned
to a cluster. A hard clustering is one in which each observation is in exactly one cluster
whereas a soft clustering assigns a degree or probability to which an observation belogs
to a cluster. On the other hand, clustering techniques can also be broadly classified into
three categories (i.e. partitioning methods, density-based clustering, and hierarchical
clustering) based on the perspective the technique considers for solving the problem
[36]. The clusters considered for review here are those that are common for clustering
big data.

Partitioning methods: These methods are used to classify data points, within a data
set, into multiple clusters based on their similarity. Most of these algorithms
require the data analyst or the user to specify the number of clusters needed to
be generated.

The well known algorithms in this category are briefly discussed as follows:

• K Means Clustering: It is one of the easiest unsupervised machine learning
algorithms that is used to partition a data set into a predefined number of
clusters [37]. K indicates the number of clusters that are required to be gen-
erated. The main purpose of this algorithm is to group together observations
by making within-cluster variations as small as possible.

• Other techniques: K-medoids clustering also called as PAM (Partitioning
Around Medoids) [38] and CLARA (CLastering Large Algorithms) [39] are
some of the other common partitioning techniques. K-medoids has the same
structure as k-means except it uses mediods instead of means in order to
be more robust to outliers. However, it also suffers from the same problem
that k-means entertains which is difficulty in pre-defining the desired number
of clusters. CLARA is designed based on PAM and it focuses mainly on
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addressing the practicality issue which occurs with both k-means and k-
medoids as they are slow to handle large volume data.

Density-based clustering: This technique works by grouping together data points into
arbitrary-shaped clusters. It follows the principle that an area where the density of
data points exceeds some predefined threshold will be considered as a cluster. This
helps to identify outliers and in the data set. There are different density-based
clustering algorithms [36, 40]. We will briefly discuss some of the most common
ones here.

• DBSCAN (Density-Based Spatial Clustering of Applications with Noise):
It [41] is widely known as the first density-based clustering algorithm intro-
duced and has been a base for more clustering techniques in this category.
In DBSCAN, areas with high density of observations or data points are taken
as clusters and those with low density are more likely noises or outliers. It
works by classifying the data points as core, border, and noise points and
takes three parameters as inputs; the size of he neighbor points, the radius
of a neighborhood, the minumum number of data points in a neighborhood.

• Other Algorithms: RDBC is an algorithm designed as an extension of DB-
SCAN and it doesn’t need the desired number of clusters to be predefined.
RDBC performs better as compared to DBSCAN as it changes the parame-
ters intelligently and separates the process of identifying the core data points
from the actual clustering of each data point. Some of the other known
density-based clustering algorithms are OPTICS(Ordering Points to Identify
the Clustering Structure) [42] and DENCLUE(DENsity-based CLUstEring)
[43, 44]. OPTICS is an algorithm for finding density-based clusters in spa-
tial data whereas DENCLUE uses kernel density estimation based model and
it doesn’t work well on data with uniform distribution which leads to its
incapability of handling high-dimensional data.

Hierarchical clustering: The hierarchical clustering techniques group data points into
a tree of clusters which is called dendrogram [45]. A dendrogram is constructed
either in top-down or bottom-up approach containing a sequence of nested clus-
ter. A bottom-up construction of dendrograms is called agglomerative clustering
whereas the one that follows top-down approach is called divisive clustering. A
dendrogram is formed in such a manner that all inclusive cluster resides at the top
and singleton clusters of individual data points are positioned at the bottom of the
tree. At each intermediate level of the dendrogram, a cluster is formed by either
combining two clusters from the next lower level or by splitting a cluster from the
next upper level depending on the type of the approach used for constructing the
dendrogram.

• Agglomerative clustering: It starts by assigning each data point to a sin-
gleton cluster and follows by merging the two cluster which are most similar
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Figure 2.2.: Agglomerative Clustering[36]

(or closest) clusters together at each iteration. It stops when only one cluster
is left containing all of the observations (data points) from the data set or
when a certain stopping criterion is met. Any chosen distance metric can be
used to determine the distance between two observations. Moreover, there
are various methods which can be used in order to decide which clusters
have to be merged at each iteration. The workflow involved in agglomera-
tive clusering showing the main steps is depicted in Figure 2.2 [36]. One of
the widely used agglomerative clustering techniques is ward’s agglomerative
clustering algorithm which uses the sum-of-squares criterion [46].

• Divisive clustering: The opposite of the agglomerative clustering is divisive
clustering which starts with making an all inclusive single cluster and contin-
ues by splitting the most sparse cluster into two clusters based on distance
functions.

A tabular representation of the comparison of the most popular algorithms from each
category discussed above is shown in Table 2.3.

2.2.2. Determining Optimal Number of Clusters

Apriori information about the number of clusters mostly in partitioning clustering algo-
rithms is required. Moreover, it is desirable to be able to know the number of clusters
in hierarchical clustering as well. In addition to allowing analysts to look at the resulting
dendrogram, it will be an interesting feature for the system to be capable enough to
propose an appropriate number where the dendrogram can be cut.

In general, determining the optimal number of clusters has been a challenge and it

20



2.2. Clustering

Table 2.3.: Comparision of Clustering Algorithms

Algorithm Advantages Disadvantages Applicability to
Big data

K-Means Easy to implement. Challenging to de-
termine the num-
ber of clusters in
advance[36].

Suitable as it
can be easily
parallelized

Doesn’t handle
noisy data [40].
Sensitive to out-
liers

DBSCAN Capability to generate
clusters of different size
and shape

does not work well
with clusters of dif-
ferent densities

Suitable as it is ro-
bust to outliers

Agglomerative
clustering

No apriori information
about the number of
clusters required.

The algorithm can
never undo what it
has already done.

Not so recom-
mended because
of its time com-
plexity

It is easier to decide on
the number of clusters
by looking at the dendro-
gram

Time complexity
of at least O(n2
log n) is required

Easy to implement.
More informative.

is still an open research as there is no best method to do so. In a broader sense, there
are two ways to decide on the number of clusters; manually by looking at the result of the
clustering process and automatically by using different approaches. Even if the manual
process yields better result, it is time consuming and not ideal to do it manually if the
data set is big. Therefore, it is more desirable and appropriate to have an automatic
approach for determining the correct number of clusters.

1. Elbow Method: Given the function within-cluster sum of square (WSS) which is
used to measure the compactness of a clustering, with the intention of making it as
small as possible, the main concept behind the elbow method is to take a number
of clusters where adding another cluster doesn’t improve the total WSS value. The
first step in applying elbow method is to run the clustering algorithm for each k in
some range, and then for each k compute WSS, finally plot the graph according
to each wss - k pair and take the knee on the graph as the optimal number of
clusters [47].

2. Average silhouette method: It is an alternative to elbow method and can be
used by any clustering technique. It measures the quality of a clustering by com-
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puting the average silhouette of data points for different values of k. A high
average silhouette value indicates a good clustering and low value shows low qual-
ity clustering. It is quite similar to the elbow method except instead of WSS it
uses average silhouette value and instead of an elbow it looks for the maximum
value on the graph [48].

3. Gap statistic method: An approach which works with any clustering technique
and it works by comparing the total intra-cluster variation for different values of k
with their corresponding expected values under null reference distribution of the
data set. The value which maximizes the gap statistic will be taken as the value
for k - the optimal number of clusters [49].

Table 2.4.: Comparision of automatic methods for determining optimal number of clus-
ters

Method Advantages Disadvantages

Elbow
Method

Very clear and Ambiguous in some cases,
easy to implement measures a global clustering

characteristic only
Average
silhouette
method

Unambiguous Measures a global clustering
characteristic only

Gap statistic
method

Accurately estimates single
clusters

The performance decreases as
the clusters separate.
Reference distribution has to be
chosen by the data analyst

2.2.3. Applications of Clustering

In general, clustering can be employed in different kind of data analysis services. Its
result can be utilized directly for decision making purpose or taken as an intermediate
step in other data-centeric tasks. For instance, it can be used in Data Mining, Pattern
Recognition, Image Analysis, Bioinformatics, ML, Voice Mining, Image Processing, Text
Mining, Web Cluster Engines, Whether Report Analysis [50]. In addition to these, it can
be put into use in applications such as Recommendation Engines, Market Segmentation,
Social Network Analysis, Search Result Grouping, Medical Imaging, Image Segmenta-
tion, and Anomaly Detection.

Besides, there are different researches conducted to build TD by incorporating different
clustering algorithms. For instance, ”text clustering for TD” [51] and ”A topic detec-
tion approach through hierarchical clustering on concept graph” [52] are some of the
TD approaches which are based on clustering techniques. More detailed review of these
papers is presented in Section 4.
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2.3. Ontologies

According to its use in computer science specifically in the area of Artificial Intelligence
(AI), an ontology refers to an engineering artifact, built using a specific vocabulary to
describe the domain being modeled, having a set of explicit assumptions about the in-
tended semantics of the terms in the vocabulary and the relationship among the terms
[53]. In a similar notion, an ontology can be defined as a ”specification of a concep-
tualization” [54]. In the following sub sections, the basic components of ontologies are
presented followed by the review of the main roles of ontologies in different data analysis
service more specifically in TD.

2.3.1. The Common Components of Ontologies

The most common components of ontologies are individuals, classes, attributes, and
relations. Individuals are also known as instances or objects and they are the basic or
ground elements of an ontology. Classes (or concepts) are made up of individuals with
common attributes. Attributes also called as properties are the characteristics that indi-
viduals entertain. The possible association between individuals is refereed to as relations
or relationships.

Ontologies are encoded using ontology languages in order to let computers understand
and interpret the stored information in an ontology and make intelligent inferences or
reasoning activities. Even if there are different ontology languages available such as
description logic, first order logic, RIF (Rule Interchange Format), KIF (Knowledge In-
terchange Format), Resource Description Framework (RDF), and RDFS (RDF Schema),
OWL (Web Ontology Language) is the widely used and the recommended ontology lan-
guage by W3C.

In regards to OWL ontologies, a knowledge base is defined as a combination of TBox
and ABox where TBox is a set of terminological axioms and ABox is a set of assertional
axioms. In most cases, a terminological axiom is a subsumption of the form C v D
which states that all of the instances of the concept C are also that of D. Thus, the
axioms in TBox are used to construct the taxonomy of the ontology. On the other
hand, assertional axiom is used to describe a concrete situation such as an individual
being an element of some class or two objects being related to each other through a
certain relationship. Based on this definition, it is possible to entail the statement that
an ontology can be seen us a special kind of knowledge bases which is mainly dedicated
for the semantic web.

Nowadays, as it is depicted in Figure 2.3, there are plenty of linked data sets avail-
able on the internet from which DBpedia3 is a widely used domain-generic data set
covering variety of topics. DBpedia has been used as a dataset for different linked data

3http://wiki.dbpedia.org
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based applications. The W3C standard query language which is used to query ontolo-
gies and linked data sets like DBpedia is SPARQL (SPARQL Protocol and RDF Query
Language)[55].

2.3.2. The Roles of Ontologies in TDL

Generally, ontologies are used either by experts or by computers. They can provide sup-
port in building semantic web applications. Ontologies have been employed in different
data mining tasks such as classification, clustering, information extraction, recommen-
dation system, link prediction, association rule mining [56].

Ontologies have been used for the purpose of TD by researchers in the area of se-
mantic web so far. In most researches, ontologies are used to generate semantic labels
for identified topics. OntoLDA [57] is one of the studies that make use of ontologies
for topic labeling purpose. Besides, there are works which use ontologies for identifying
topics as well. For instance, Wikipedia can be used as a knowledge graph to help build
a topic identification system [58].
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Figure 2.3.: The Linked Open Data cloud diagram4

2.4. Summary

In this chapter, the topics such as word embedding, higher level text embedding, text
similarity measures, clustering and its applications in TD, and overview of ontologies
and its use for TL are presented. As it is discussed in the literature review about word
embedding, the prediction based word embedding techniques are more popular lately
and perform well with various ML and DL algorithms. The word embedding algorithms
Word2Vec, GloVe, FastText, Sent2Vec, and Sent2VecC are a matrix factorization prob-
lems with Word2Vec being the base for almost all of the other prediction based tech-
niques discussed so far. On the other hand, for higher level text embedding we have

4http://lod-cloud.net
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covered various methods in the review. The easier and mostly used method for com-
puting embeddings for higher level text structures is using weighted-average of vectors
of words that make up the text.

Even though there are various text similarity measures classified in broader categories
as knowledge-based, corpus-based, string-based metrics, in this chapter we focused on
string-based (specifically term-based) metrics as those are the ones which are more ap-
plicable to the clustering methods used in this research. Moreover, various types of
clustering techniques and algorithms are discussed with the intention of providing infor-
mation to readers on how clustering algorithms work and how different they are with
each other. Finally, a high level description of ontologies and their use in the design and
development of TDL applications with foucs on DBpedia has been given.
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In this chapter, the assumptions driven to achieve the intended result with this thesis
work will be described followed by the requirement analysis specification, derived for the
proposed system, consisting of description of the general use case with functional and
non-functional requirements.

Requirements are features of a software system or a software system function used
to fulfill system purpose. Requirements analysis is the first phase in software engineer-
ing process encompassing the process of eliciting, analyzing and recording requirements.
It can play a vital role in the success of a software development because it provides a
model of system information, function and behavior for software designers. The gener-
ated model can be used later in other software development phases mostly in designing
phase.

Even though requirements can be categorized in many ways, the most common way
to classify them is as functional and non-functional requirements. Functional require-
ments are those that are used to capture the important tasks or actions involved in the
system whereas non-functional ones are those used for evaluating the operation of a
system. Requirements can be captured in many ways. One of the most common ones
is using use cases.

3.1. Assumptions Taken

In order to address the research questions defined in Section 1.3, the following assump-
tions have been made.

• Topic: In other related works like Latent Dirichlet Allocation (LDA) [3], a topic
is taken as a set of semantically related terms. However, in this masters thesis, a
topic is defined as a set of sentences which are semantically similar. The similarity
between sentences is determined using a text similarity measure.
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• Topic Boundaries: A boundary of a topic p is a set of pairs of positions in a tran-
script where each pair, {i, j} with i <= j, consists of positions of two sentences
Si and Sj with every sentence between Si and Sj discusses the topic p and the
sentence that comes before Si (Si−1 if there is any) and the sentence that comes
after Sj (Sj−1 if there is any) do not belong to the topic p.

In a more formal sense, a transcript t is defined as a sequence of sentences as
shown in Equation 3.1 where n is the total number of sentences in t and i is the
index of the sentence Si ∈ t. Given t, a boundary B of a topic p in t is defined in
Equation 3.2.

t =
n⋃

i=1

Si (3.1)

B(p, t) =

n⋃
1<=i<=n,i<=j<=n

{i, j} (3.2)

where i and j are the positions/indices of sentence si and sj respectively with all
the sentences from si up to sj belong to the topic p.

• Data Point: In the clustering algorithm, we take a sentence to be the smallest
data point to be clustered.

• Sentence-Topic correlation: A sentence is assumed to have exactly one topic
i.e. a hard clustering algorithm will be used which assigns one sentence to only
one cluster.

3.2. Use Case

Use case modeling is one of the methods used for describing the software requirements
of a system. A use case model is composed of use case diagrams and their descriptions.
Use cases play a great role in capturing and showing the interactions among actors,
components of the system, and any external systems. The use case diagram depicted
in Figure 3.1 shows how the Topic Detection and Labeling (TDL) system interacts with
external actors or external systems.

The description of the terms used in the Use Case diagram are stated as follows:

• Webinar Transcript: The text equivalent of a video/audio file generated manually
or by speech to text recognizer.

• External Knowledge base: An ontology or a linked data set like DBpedia which
contains a set of RDF triples.
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• User : A person who interacts with the system to get the service provided by the
system.

As it is illustrated in Figure 3.1, first, a user has to upload a transcript to the system.
Then the system will detect topics (topic boundaries) in the uploaded text document.
Once the boundaries are identified, the terms which can be used to label the topics will
be generated with the help of external knowledge base. Finally, the result, the topics
and their labels, will be returned to the user.

Figure 3.1.: A Use case diagram.

3.3. Functional Requirements

Functional requirements are used to describe what the system is required to do. Specif-
ically, these requirements state clearly what data is entered to the system and by who,
what operations are performed by each component of the system, and the work-flows
within these components and with external systems as well. The requirements are in-
tended to show the behavior of the system.

In compliance with the use case diagram in Figure 3.1, the following functional re-
quirements have been specified for the proposed system.
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• FR-1 Topic Detection: The system should be able to identify topics discussed
in a transcript by putting sentences that are semantically similar into the same
group. Therefore, a topic identified has to be a set of sentences as the way the
concept of topic is defined in this research.

• FR-2 Optimal Number of Topics: The system should be capable enough to find
the optimal (the most desirable) number of topics in a transcript with no or very
less user involvement.

• FR-3 Boundary Detection: For every detected topic in a transcript, the system
should be able to identify the boundary of the topics in the transcript.

• FR-4 Topic Labeling: For each identified topic, maximum of 5 terms should be
assigned by the system to be used as labels for the topics. These terms have to
be generated in a way that they can semantically represent their respective topic.

• FR-5 Utilizing External Knowledge-base: In the process of TL, the system
should be able to make use of external knowledge base to rank candidate labels
according to their relevance.

3.4. Non-functional Requirements

Non-functional requirements are designed to support functional requirements by impos-
ing quality constraints related to performance, security and reliability on the system.
Having these requirements defined earlier helps in making sure the system achieves the
level of quality that users expect from it. The following non-functional requirements are
derived for the proposed TDL system.

• NFR-1 Response Time: As it is stated by Tedtalk1, one of the most widely
known online webinars/talks providers, the maximum length of a single TED talk
is 18 minutes starting from about 2 minutes minimum duration. The word count
of an 18 minute TED talk is about 2800 - 3800 (average -3300) words2. The
average number of words for a single sentence is about 15-20 (average -18) words3.
Therefore, a tedtalk of the maximum allowed length contains in average 3300

18 =
188 sentences. On the other hand, a single webinar or meeting held in a company
(like LogMeIn), conferences, seminars, and educational online events may take
up to 60 - 90 minutes. Thus, such videos may take in average 786 sentences as
calculated using the formula in equation 3.3 with averageWordCount = 3300,

1https://www.linkedin.com/pulse/20140313205730-5711504-the-science-behind-ted-s-

18-minute-rule
2http://expertenough.com/3077/10-steps-to-create-a-standing-ovation-worthy-ted-

talk
3https://strainindex.wordpress.com/2008/07/28/the-average-sentence-length/,

http://countwordsworth.com/blog/what-is-a-good-average-sentence-length/
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minLength = 60, maxLength = 90, maxDuration = 18, minWords = 15,
and maxWords = 20. These parameter assignments are discussed above in detail.

transcript size =
(
averageWordCount∗(minLength+maxLength

2
)

maxDuration )
(minWords+maxWords)

2

(3.3)

Since the proposed system should be able to work for both TED talks and We-
binars/Meetings, an average length of these two categories will be considered for
evaluation purpose, i.e. a video can have a duration of 2 - 90 (average - 2+90

2 = 46)
minutes. The transcript generated for a video of 46 minutes has 482 sentences
in average calculated using the formula in equation 3.3. The parameters in the
equation are assigned the same values as discussed above except minLength and
maxLength are given 2 and 90 respectively. Therefore, The time that the pro-
posed TDL system takes to return topics and their labels after a user uploads a
transcript of average size (482 sentences) should not be more than 1 minute.

• NFR-2 Scalability: The system should be capable enough to work regardless of
the size of an input transcript increases.

• NFR-3 The system should always return a result: The system should be capable
enough to always return results back to the user whether it is a list of topics or
just 1 topic (i.e. It has to work accurately even if all or most of the words in the
transcript do not exist in googles word2vec vocabulary).

3.5. Summary

In this chapter, the assumptions taken to solve the research questions along with the use
case, the functional requirements, and the non-functional requirements derived in order
to be satisfied by the proposed TDL system were discussed. These requirements have
different level of importance in the system and for that reason they are classified into
three categories as Must-have, Should-have, and Could-have. Must-have requirements
are guaranteed to be satisfied by the proposed system. On the other hand, Should-have
requirements are very much valuable if they are met whereas Could-have requirements
are a plus to have met but not required to be delivered.

Table 7.6 summarizes all the requirements discussed in this chapter and classifies them
as must-have, should-have, and could-have. As it can be seen from the summary, the
main purpose of this thesis is to fully design, implement, and evaluate the Topic De-
tection (TD) component and to do as much as possible with the Topic Labeling (TL)
component as it is given lower priority.
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Table 3.1.: Classification of the TDL system requirements

Requirements Must-have Should-have Could-have

F
u
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ct
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n

a
l FR-1: Topic Detec-

tion
3

FR-2: Optimal Num-
ber of Topics

3

FR-3: Boundary De-
tection

3

FR-4: Topic Labeling 3

FR-5: Utilizing Exter-
nal Knowledge base

3

N
o

n
-

F
u

n
ct
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n

a
l NFR-1: Response

Time
3

NFR-2: Scalability 3

NFR-3: The system
should always return a
result

3
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Before attempting to find a new method which will help solve a certain research prob-
lem, it is required to first conduct reviews on the existing approaches and research works
undertaken to solve the same problem and identify their contribution and limitations. To
this end, since the main objective of this master’s thesis is to propose a Topic Detection
and Labeling (TDL) system which detects topics with their boundaries in a transcript
and assigns the topics with representative labels, it is found to be vital to first study the
existing automatic approaches which are used for detection and labeling of topics.

Therefore, in this chapter, the existing related works in the area of Topic Detection
and Labeling (TDL) will be discussed. First, the research works proposed so far for the
purpose of addressing the Topic Detection (TD) problem will be presented followed by
the review on studies conducted on Topic Labeling (TL) task. Then, requirement-based
high level comparison of the existing systems with the method proposed in this master’s
thesis will be given. Finally, the chapter will be concluded by giving a brief summary of
the whole chapter.

4.1. Existing Works in Topic Detection (TD)

TD has been undertaken as a research topic for over two decades, since 1996, being
a part of the well known Topic Detection and Tracking (TDT) research in the area of
Natural Language Processing (NLP) and Machine Learning (ML) project sponsored by
DARPA1. TDT is a process of detecting and monitoring new events in text, audio, or
video broadcast news stories [59]. In a more general and simpler sense, it can also be de-
fined as a process of detecting previously unknown topics and tracking the reappearance
of the existing ones. It comprises five main tasks namely, Story Segmentation, Topic
Tracking, TD, First Story Detection, and Link Detection tasks. Despite these tasks

1https://www.darpa.mil
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existing by their own, there is no clear boundary between them regarding the approaches
used to solve them. For instance, Story Segmentation can be considered as part of TD
based on the kind of methods used for solving the TD task. In our case, in the way TD
is defined in this research, we can consider Story Segmentation as the same as Boundary
Detection (BD) which is one of the tasks in the TD component of our proposed system.

Apart from being a part of the TDT project, various researches have been conducted
solely on the TD task [60, 52, 61]. In different researches, the definition of the term
topic, or in more broader sense TD, may be defined in a sightly different manner de-
pending on the structure and model proposed in the particular research. For instance,
one way to define TD is to formulate it as the problem of detecting stories in multiple
continuous news streams that discuss new or previously undetected events [51]. In this
master’s thesis, TD is a process of identifying topics and their boundaries in a transcript
where topic is defined as a set of sentences with syntactic and semantic similarity.

The existing solutions provided for solving the TD problem will be categorized as super-
vised and unsupervised and discussed as follows.

Unsupervised Approaches
Most of the TD research works conducted so far follow an unsupervised approach
due to the challenge in finding a data set labeled with topics which can be used to
train a model. The most common unsupervised approaches employed for solving
the problem of TD so far are based on either probabilistic clustering techniques,
external KBs, latent tree models, or formal concept analysis method.

In 1999, an unsupervised topic modeling approach entitled probabilistic latent
semantic indexing (pLSI) was proposed to capture hidden topics in documents
by recreating each document from corpus using probabilistic distributions [62]. A
document is a probabilistic distribution over a set of topics whereas a topic is over
a set of words extracted from the corpus. Even though pLSI has advantages over
its non-probabilistic previous version LSA [63] such as handling polysemy, it has
its own drawbacks that have been addressed in researches that came later on. For
instance, the number of parameters in the model grows linearly with the size of
the corpus, which may lead to overfitting. Moreover, since the model is based on
the concept of bag-of-words, the order of words in the document is not taken into
consideration i.e. the words in the document are exchangeable, this may lead to
generating incoherent topics. Most of all, there is no clear way to assign proba-
bility to a new document outside of the training data set which makes the model
not a true generative model. This makes pLSI not a suitable approach for topic
identification as topics are generated rather online.

In another research, a generative model called Latent Dirichlet Allocation (LDA)
came with valuable improvements over pLSI [3]. LDA is a generative probabilistic
model of a corpus which takes a document as a random mixture of latent top-
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ics, where a topic is of probability distribution over words of the corpus. LDA
is bayesian version of pLSI with vital improvements. It makes pLSI a generative
model by assigning probability to documents outside of the training set i.e. by im-
posing drichilet prior on the model parameters. In LDA parameters are regularized
so as to avoid the problem of overfitting. However, LDA has quite unavoidable
limitations such as focusing on word probability rather than the actual semantics
of the words in a document, being incapable of determining the optimal number
of topics, and not suitable enough to get topic boundaries in a document.

Various approaches that are based on clustering techniques are proposed so far
to address the TD problem. The paper [64] presents a TD approach which is
based on a simple-linkage agglomerative hierarchical clustering and IDF-weighted
cosine coefficient document similarity metric. Topics generated using this method
are susceptive to off-topic materials which degrades the quality of the TD sys-
tem. Another clustering-based TD approach is to use an incremental k-means
algorithm for grouping stories together so as to generate topics [60]. This method
uses the bayesian belief network (BBN) probabilistic similarity metric to find the
most similar cluster for a story and a TF-IDF weighted cosine distance metric
with BBN topic spotting metric as threshold metrics to decide whether a story
should be merged with a cluster. Another related paper [64] presents a TD system
which uses k-means clustering with cosine similarity for TD by representing text
with weighted chosen feature words and running the clustering algorithm on the
vectors. This method doesn’t perform very well if the keywords selected do not
cover the whole content and semantics of the document. Moreover, in another
research work, a TD algorithm is designed by using a modified TF-IDF algorithm
called TF-Density to give weight to words in a text and then by applying clustering
algorithm with cosine similarity measure [65].

Another research [66] presents a TD system by utilizing a clustering technique
to group together sentences with similar meaning/topics. For the clustering algo-
rithm, the distance matrix is created by using the semantic distance between two
nouns considering their hypernym relation in Wordnet. The clustering algorithm
applied in this paper works in a way that the initial clusters are generated by 10%
or 20% of the total number of sentences. This amount, k, is determined by the
compression rate needed for the summary. These initial clusters are generated by
putting together k pairs of closest sentences. These clusters are further updated
by adding the rest of the sentences to the nearest clusters. Finally, a topic strength
summarizer for single documents is used to evaluate the approach. One of the
weaknesses of this approach is that the number of topics have to be given first.
The other one is that the similarity of sentences is not symmetric and they used
average value for compensation which is still not quite appropriate. Moreover, the
order of sentences in a document is not considered which we claim affects the
performance of the clustering process.
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Applying a hierarchical clustering approach on concept graphs constructed from
documents is another method proposed for TD [52]. The idea in this paper is to
represent a document with concept feature vector where each concept contains
two words from the document and a concept graph is generated using the col-
lection of concepts from documents. Given the concept graph, an agglomerative
hierarchical clustering algorithm is used to get clusters out of the graph. Another
clustering approach to TD is a constructive-competition clustering algorithm which
is inspired by competitive learning from the neural network research [51]. A key-
word based TD [67] system that uses the induced k-bisecting clustering algorithm
with Jensen-Shannon divergence of probability distributions as a distance measure
has also been proposed.

The role of formal concept analysis (FCA) for TD has been investigated to gen-
erate topics from tweets [61]. In this research, a set of formal concepts (which
are made of tweets as objects and terms as attributes) are generated to form con-
cept lattices and from these latices a set of topics or clusters are chosen. Some
of the drawbacks of this approach are redundancy and sparsity that rise due to
the representation of text/tweet with just terms with out involving text structure
or semantics. Another related paper [68] also discusses a TD system based on FCA.

KBs such as WordNet, Wikipedia, and DBpedia can be used in different ways
in TD process. A research [69] proposed a TD system by training a perceptron
with pair-wise comparisons of documents to determine if two documents discuss
the same topic or not. It works by representing documents with semantic classes
and using a separate similarity measure for each class to perform class-wise docu-
ment comparison. Places, names, temporal expressions and general terms are the
classes considered for the representation of documents. Geographical and tempo-
ral domain specific ontologies are used for formulating the similarity metrics for
places and temporal classes respectively. Despite the advantage of representing
documents semantically, the performance of the system rather degraded because
of the similarity functions used. A similar approach which generates topics from
webages using complete link clustering with cosine similarity measure has also been
proposed [70]. Another paper [71] presents a TD method which models topics as
concept graphs where a node is a concept representing a topic and the edges are
semantic relationships extracted from WordNet. However, this approach is not
suitable for detecting topics in a dynamic text stream and online event detection
due to the fact that these processes require incremental algorithms and the ap-
proach doesn’t support that.

In addition to all the papers discussed above those based on clustering, KB, and
FCA, there are some which investigate hierarchical latent tree model (HLTM) for
TD purpose as well [72, 73, 74].
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Supervised Models
Even though most of the research works in TD follow unsupervised approach, some
works have been undertaken in order to utilize the advantage of supervised or semi-
supervised modeling for detecting topics. A paper [75] presents an approach to
find topics/clusters from a set of tweets which are priorly associated with a certain
entity. Since the entity to which a tweet is relevant has to be given first, this
approach can not be considered as a standard TD system. Another research work
[76] has been conducted to detect topics in tweets about organizations. In spite
of their attempt to use a semi-supervised method to learn emerging topics, the
algorithm is not capable of handling general entities other than organizations such
as location, people and so on. The reason behind this is that their data is collected
only for organizations with the intention to capture emerging topics with respect
to organizations only.

4.2. Existing Works in Topic Labeling (TL)

TL is the process of generating a set of representative terms for a topic that well cap-
ture the underlined meaning of the topic. Labeling topics with short and expressive
phrases play a vital role in giving the topic a human understandable representation with
meaningful interpretation and yet the labels can be used for further tuning of the TD
algorithm. Various researches have been conducted in the area of TL giving a potential
algorithm for labeling topics which are generated by using different TD algorithms.

The paper entitled ”Automatic Labeling of Topic Models” [4] proposes a topic labeling
method which is used to label topics generated using LDA topic modeling algorithm.
In general, the approach proposed in this paper is composed of two parts; candidate
generation and candidate ranking. In order to generate a label candidate set, it starts by
querying Wikipedia with the top-N terms from the topic using Wikipedia’s native search
engine and site-restricted Google’s search and extracting the titles from the top-ranked 8
documents. Then the initial candidates will be further processed to extract noun chunks
along with their component n-grams excluding those for which their is no separate article
in Wikipedia. Since this candidate term set contains stop words or words which are no
relevance to the topic, the method uses the RACO lexical association method [77] to
remove these irrelevant words. The candidate ranking component starts by representing
each candidate label with features using lexical association measures (point wise mutual
information, Student’s t-test, Dice’s coefficient, Pearson’s X2 test, and the log likelihood
ratio), lexical properties of the candidate (the actual number of terms and the relative
number of terms in the label candidate that are top-10 topic terms), and a search engine
score for each label candidate. Two alternative candidate ranking algorithms, unsuper-
vised and supervised algorithms, are proposed in this paper.The unsupervised model can
make use of any of the defined features for selecting candidate labels. On the other
hand, for the supervised method, a support vector regression (SVR) model is trained by
combining all the features together and using a gold-standard labeling of the candidate
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labels.

Using summarization technique to label topics generated using topic models is also
one of the methods proposed for automatic labeling so far. A paper with the title ”Au-
tomatic Labeling of Topic Models Using Text Summaries” [5], introduced a method for
adapting the document summarization algorithm based on submodule optimization for
solving the TL problem. The algorithm works by first selecting a candidate sentence
set for each topic and then forming a topic summary using the sentences. In order to
create the candidate sentence set for a given topic, the Kullback-Leibler (KL) divergence
between the word distribution of the topic and each sentence in the corpus is computed.
The sentences are yet ranked according to the corresponding divergence value and the
top 500 sentences are taken for the summarization phase of the algorithm.

Researchers in the area of NLP have been investigating the use of ontologies for the
purpose of both topic detection and topic labeling. The research ”Automatic Topic La-
beling using Ontology-based Topic Models” [6] presents a method that utilizes DBpedia
to label topics which are extracted by topic models which use ontologies for the topic
generation algorithm (i.e. the topic model is trained over concepts instead of words),
specifically LDA. Since a topic is defined as a distribution over concepts, the system
takes the top topic-concepts and maps them to an ontology in order to find ontology
classes which best fit as labels for the topic.

In 2016, a method which models the topic labeling problem as a k-nearest neighbor
(KNN) search problem [7] with main focus on developing fast real time labeling system
has been proposed. It works by constructing a topic-label database which stores the
probability distributions over words and corresponding labels and using KL divergence
and Jensen-Shannon Divergence (JSD) to compute distribution similarity.

An approach which is initially proposed for labeling nodes in hierarchical clusters can also
be adapted for labeling of topics generated using hierarchical topic detection algorithms
[8]. It creates a label for a node in a way that the label identifies the node from the rest
of the nodes in the same level (i.e. sibling nodes). To this end, the algorithm proposed
in this paper starts by collecting unigram, bi-gram and tri-gram phrase statistics (i.e.
document frequency and term frequency) for a target cluster S. The candidate labels for
S are chosen from the phrases based on their document frequency in the cluster S, in S’s
parent cluster which is also a parent to all S’s sibling clusters, and in an English corpus.
Once the candidate labels are selected, their descriptive score is computed and used to
sort them accordingly. Finally, a cut-off point is determined to choose the appropriate
number of labels from the candidate set.

Table 4.1 presents the limitations of the existing TL approaches discussed above.
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Table 4.1.: Drawbacks of existing TL approaches

Approaches Description Drawbacks

Automatic Labeling of Topic
Models [4]

Selects candidate labels using Wikipedia and
applies both supervised and unsupervised
ranking and generates flat labels

Dependent on External Knowl-
edge base which makes it inca-
pable of labeling emerging top-
ics discussed in a meeting or
webinar for which there is no
wikipage

Automatic Labeling of Topic
Models Using Text Summaries
[5]

Selects sentences and summarizes them us-
ing submodule optimization based summa-
rization technique to use the summary as a
label for a topic

It doesn’t check whether the
summary generated for a topic
is coherent

A Novel Fast Framework
for Topic Labeling Based on
Similarity-preserved Hashing
[7]

Uses topics generated with Labeled LDA to
train the proposed approach to learn labels
for new topics

Since it uses only the informa-
tion from the topic words, it
is vulnerable to the problem of
missing the underlying meaning
of the words in a topic

Automatically Labeling Hierar-
chical Clusters [8]

Finds a set of labels for a node in hierarchical
cluster by choosing phrases from the cluster
at that node which are more unique to that
specific cluster

The algorithm doesn’t perform
well in ranking labels selected
for clusters with few number of
observations (i.e. topics with
few number of sentences)

Automatic Topic Labeling us-
ing Ontology-based Topic Mod-
els [6]

Uses ontology to find labels for topics Dependent on DBpedia to de-
termine the connection or co-
herence between topic-concepts

4.3. Comparisons of the Existing Systems

In this section, we compare the existing and the proposed TD and TL approaches based
on the requirements specified in Chapter 3. As it is shown in Table 4.2, only those existing
researches which are highly related to the TDL method proposed in this masters thesis
are chosen for the comparison. In this table, the check marks 3and 7are interpreted as
fulfilled and not-fulfilled respectively.
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Table 4.2.: Comparisons of TD and TL approaches based on requirements
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Topic detection and tracking using idf-
weighted cosine coefficient [64]

3 3 7 7 7 Not
spec-
i-
fied

Not
spec-
i-
fied

3

Topic detection in broadcast news [60] 3 3 7 7 7 Not
spec-
i-
fied

Not
spec-
i-
fied

3

A topic detection and tracking system
with TF-Density [65]

3 3 7 7 7 Not
spec-
i-
fied

Not
spec-
i-
fied

3

A non-linear topic detection method for
text summarization using wordnet [66]

3 3 7 7 3 Not
spec-
i-
fied

Not
spec-
i-
fied

3

A topic detection approach through hier-
archical clustering on concept graph [52]

3 3 7 7 3 Not
spec-
i-
fied

Not
spec-
i-
fied

3

Automatic Topic Labeling using
Ontology-based Topic Models [6]

3 7 7 3 3 Not
spec-
i-
fied

Not
Spec-
i-
fied

7

Automatic Labeling of Topic Models [4] 7 7 7 3 3 Not
spec-
i-
fied

Not
Spec-
i-
fied

7

A Novel Fast Framework for Topic
Labeling Based on Similarity-preserved
Hashing [7]

7 7 7 3 7 Not
spec-
i-
fied

Not
Spec-
i-
fied

3

Automatically Labeling Hierarchical
Clusters [8]

7 7 7 3 7 Not
spec-
i-
fied

Not
Spec-
i-
fied

7
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4.4. Summary

In this chapter, the research works conducted in the area of TD and TL were discussed.
The review of these studies were conducted to assess the existing work with respect
to the requirements and to demarcate the proposed approach in this thesis from the
existing approaches. The contributions and drawbacks of each of these approaches are
pointed out as per the requirements. To sum up, an improvement over the existing TDL
methods is required as the comparison of these methods indicates that most of them do
not satisfy the major/must-have requirements.
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5. Design of the Topic Detection
and Labeling (TDL) System

5.1. Overview

In this chapter, the design of the proposed Topic Detection and Labeling (TDL) system
is presented in detail. As depicted in Figure 5.1, the proposed system architecture is
composed of two major components: Topic Detection (TD) and Topic Labeling (TL).
The TD part is dedicated for designing a component for identifying topics along with
their boundaries from transcripts. The result of this component which is a list of topics
is used later as input for the TL component in order to generate representative labels
for the topics.

The major activities employed in TD are Sentence Embedding (SE), Customized Agglom-
erative Clustering (CAC), and Determining the Optimal Number of Topics (DONT). SE
is used to represent sentences from a transcript with vectors of real numbers. The CAC
process involves applying a Sentence Similarity (SS) and Cluster Linkage (CL) function
to get hierarchical clusters of sentences of a given transcript. The SS method is used to
determine the similarity between each data point used in the clustering process whereas
the CL function is applied to decide which two clusters to merge at each level of the
hierarchy.

On the other hand, the TL component of the system employs two main tasks; Label
Generation (LG) and Label Ranking (LR). In the LG task, a set of semantically enriched
terms are chosen as candidate labels with the involvement of an external knowledge base
(specifically DBpedia) in order to represent a certain topic. Once a set of candidate la-
bels are generated, the LR task will be undertaken to rank the labels according to their
importance to the topic being interpreted.
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Webinars/
Meetings
Transcript

Sentence
Embed-
ding(SE)

Sentence
Similar-
ity(SS)
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Topic Detection(TD)
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Label
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Topic
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Topic Detection and Labeling(TDL)
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and
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bels

Word Embedding Model

Topics

Figure 5.1.: The general framework of the proposed TDL system

5.2. Topic Detection (TD)

The TD component is dedicated to splitting audio/video textual transcriptions into
parts or segments based on structural integrity and semantic coherence. Each of these
segments is referred to as a topic containing one or more sentences. As depicted in Figure
5.1, the input given to the TD component is a textual transcript which is assumed to be
divided in to sentences in advance. This transcript will be passed to the SE algorithm in
order to generate embedding for the sentences in the transcript. Then, these sentence
embeddings will be given as an input to the CAC algorithm which generates hierarchical
clusters of the sentences from the transcript based on a SS measure and a CL function.
Once the clustering hierarchy is generated, the DONT algorithm which cuts the hierarchy
at some level will be applied to get an optimal number of topics that are present in the
transcript. The TD component of the proposed system is mostly designed in order to
satisfy the functional requirements FR-1 upto FR-3 discussed in Section 3.3.

5.2.1. Sentence Embedding (SE)

The first step in the TD process is to vectorize the sentences in the input transcript based
on a word/text embedding model. It is required for the sentence embedding model to
be capable enough to capture the semantics of the sentences of transcripts covering
as variety of domain as possible. In Section 2.1.1, the description, advantages, and
disadvantages of the different higher level text embedding methods, namely, VSM, Em-
bedding Centroids, Specialized Averaging of Word Embeddings, Doc2Vec, Doc2VecC,
Word Movers Distance (WMD), Skip-thoughts, Sent2Vec, and ‘Embed, encode, attend,
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predict‘ are discussed.

VSM is used to represent a text object (i.e. word, phrase, sentence, paragraph, and
mostly a document) by giving values to each term in the vocabulary of the corpus. If a
term occurs in the text, then it will be given a non zero value in the vector otherwise it
will take 0. The values can be computed using different methods such as co-occurrence
or TF-IDF. However, vsm creates sparse vectors with huge dimensions and it doesn’t
capture the actual semantics of the text as it works either by checking their existence
in the text or applying co-occurrence matrix computation. Therefore, it is not a good
option for representing text with the purpose of computing text similarity. As described
in Section 2.1.1, the Doc2vec embedding more suits for feature extraction than embed-
ding as it doesn’t work well with distance functions whereas WMD can not be used
for our approach as it is computationally expensive and is not recommended to use it
for applications like clustering that requires computing similarity between each pair of
sentences.

Due to the fact that there is shortage of transcripts in generic domain that can be
used to train our own model for this thesis work, it is reasonable to use a pretrained
word embedding model. Becasue of this reason and those discussed in Section 2.1.1,
Doc2VecC, Skip-thoughts, Sent2Vec, and ’Embed, encode, attend, predict’ methods,
for which there are no pretrianed models on big and and domain generic corpora, can
not be used for our approach. On the other hand, embedding centroids and specialized
averaging of word embeddings are highly related approaches. The former computes the
centroid of all of the words that exist in a text/sentence to get an embedding for the
whole text while the later adds wights like TF-IDF to each word embeddings before
applying averaging. Even if it is valuable to add weight to the words using TF-IDF, it
can not be done for our system due to the fact that only one transcript is processed at a
time not a corpus of transcripts (i.e. It is a single-document topic detection). So, in this
thesis it makes sense to follow the averaging word embedding approach which uses some
word embedding model. Therefore, the first step in this approach, averaging approach,
is to choose an appropriate word embedding model that best fits for implementing the
SE algorithm. It is required to note two things while choosing this model; It needs to
have a pretrained model available for English language and It should work better than
the other methods.

Word embedding is a kind of word vectorization which is a way of representing words
with vectors. Vectorization can be done in many ways but the most common ones involve
word context. However, vectors created based context are sparse and have thousands or
milions of dimensions. In order to avoid these issues, they are required to be changed
to a dense representation. The dense vectors are refereed to as embeddings. A word
embedding model provides a dense representation of words with their relative meanings.
The definition, the main concept, and the types of word embeddings are discussed in
detail in Section 2.1.1. The two broad types of word embeddings described are namely,
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frequency-based, and Prediction based Embeddings. Prediction based Embeddings are
way effective than frequency-based embbedins as they are capable of predicting words.
The common types of prediction based embeddings are word2vec, Glove, FastText, and
WordRank. Word2Vec, Glove, and FastText are more popular embedding methods than
WordRank as there are more works using those methods and there are pretrained mod-
els for each of them. However, we will consider only Word2vec’s and Glove’s pretrained
models by Stanford and Google respectively because of the limit of time and resource
of the thesis work.

Glove is based on a matrix factorization, i.e. by factorizing a word-context matrix where
the context is neighboring words. On the other hand, word2vec is based on a neural
network which takes word as an input and generates a context of the word as an output
where the context it is neighboring words. It is written in Section 2.1.1 and 2.1.1 how
word2Vec and Golve works respectively. For our proposed TD approach, we would like
to use both Glove and Word2Vec and compare the result to decide which embedding
method fits best. Therefore, the experiment will be conducted using both Word2Vec’s
and Glove’s pretrained models in order to show which one works better with the TD
component of the proposed system. Both Word2Vec and Glove pretrained models come
with different dimensions. As stated in a research [14], the common dimensions for
Word2Vec are in the interval 100 - 300 where 300 performs well with bigger vocabulary.
Regarding Glove’s pretrained models, as indicated in [17], 300 dimension gives better
accuracy even with very huge vocabulary. Moreover, for both models, as the dimension
increases the possibility to capture high dimensional properties also increases but the
training will be extremely slow. For this reason, we will choose 300 as the dimension for
both Word2Vec and Glove pretreined models for the experiment.

To this end, a SE algorithm is designed to generate a vector representation for a sen-
tence by taking a colon-wise mean of the word vectors for the words occurring in the
sentence. Figure 1 shows the pseudocode for the SE algorithm. This algorithm takes
five values as inputs; a set of sentences S, word vectors from a pretrained word em-
bedding model {vw : w ∈ V ocab}, a dimension M of the word vectors, a parameter α
with value between 0-1, and a parameter β with value between 0-1. The parameter α
is used for deciding if a sentence can be properly vectorized or not; i.e. a sentence is
properly vectorized if at least (α ∗ 100)% of the words in the sentence exist in the word
embedding model vocabulary V ocab otherwise a zero vector of dimension M will be used
as vector for the sentence. On the other hand, the parameter β is used for deciding if a
transcript with a set of sentences S has a proper vectorization or not; i.e. a transcript
has a proper or acceptable vectorization if at least (β ∗ 100)% of the sentences in S can
be vectorized. If the result of the SE algorithm for a given transcript is not a proper
vectorization, then the TD system returns a single topic containing all the sentences in
the transcript without applying the CAC process. Based on the way both α and β are
defined here it is clear to see that their values are percentages. However, in order to
make the formula simpler in the algorithm and to just take small values as inputs, we let
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the value to lie in the interval 0 to 1 where 0 and 1 indicate 0% and 100% respectively.

Algorithm 1 Sentence Embedding

Input:
S . The input transcript as a set of sentences S
{vw : w ∈ V ocab} . word vectors
α . A parameter to check if a sentence can be vectorized
β . A parameter to check if S has proper vectorization
M . The dimension of the word vectors

Output:
Sentence Embedding {vs : s ∈ S}
Proper vectorizaion

1: procedure SentenceEmbedding(S, {vw : w ∈ V ocab}, α, β)
2: Properly Unvectorized Sentences← 0
3: U ← ZeroV ectorsM. Create a vector of dimension M for those sentences with

not enough words in Vocab
4: for each s ∈ S do
5: vs ←

∑
{vw|w∈s,w∈V ocab}∪{U | w∈s∧w/∈V ocab}

|s| . Colon-wise mean of the word
vectors

6: Available words← |{w|w ∈ s, w ∈ V ocab}|
7: if Available words < α ∗ |s| then
8: Properly Unvectorized Sentences← Unvectorized Sentences+ 1
9: end if

10: end for
11: if |Properly Unvectorized Sentences| ≤ β ∗ |S| then
12: Proper vectorizaion← true
13: else
14: Proper vectorizaion← false
15: end if
16: end procedure

5.2.2. Customized Agglomerative Clustering (CAC)

So as to address research question 1.a, how to adapt an existing clustering algorithm
in order to divide a document into segments or topics, stated in Section 1.3, it is re-
quired to choose an appropriate clustering technique which best fits the purpose of this
research work. Thus, an extensive review of the available clustering techniques, with a
description of their strong and weak sides, has been conducted and presented in Sec-
tion 2.2.1. The comparisons of the most common algorithms (i.e. k means, DBSCAN,
and Agglomerative clustering) from the three broad categories of clustering, namely,
partitioning methods, density-based clustering, and hierarchical clustering is shown in
Table 2.3. According to the functional requirement FR-1 Topic detection defined in
Section 3.3, the system should be able to generate topics without prior information on
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the number of topics that exist in a transcript. On the contrary, K-means clustering
requires the number of topics to be given by the user in advance. For this reason, it
is not possible to apply k-means clustering for the TD component of the proposed system.

In the case of DBSCAN, the algorithm basically requires two parameters to work, eps
(the minimum distance between two points) and minPoints (the minimum number of
points to form a dense region). These parameters are assigned values via parameter
estimation. It is necessary to have prior knowledge about the data set to be clustered so
that a good estimation of the parameters can be achieved. However, it is difficult to use
DBSCAN for our approach as it is not possible to have previous knowledge about our
transcript data set due to the fact that the transcripts are not domain specific and topics
are detected separately for each transcript (i.e. the system employs a single-document
topic detection process as mentioned in research question 1 defined in Section 1.3).

On the other hand, agglomerative clustering algorithm is a kind of hierarchical clus-
tering which doesn’t require the user to know the number of topics or set any parameter
in advance. Moreover, with agglomerative clustering as an alternative to applying a
method to determine the number of optimal topics, it is possible to visualize the cluster-
ing process using a dendrogram to let users decide on the number of topics themselves.
But this is not applicable with k-means and DBSCAN as they do not employ a hierarchi-
cal approach. Thus, it is appropriate to choose the agglomerative clustering technique
to better satisfy requirement FR-1. Agglomerative clustering works by initially assigning
each data point to a singleton cluster and follows by merging together two most similar
clusters at a time until either a single cluster with all the data points is left or a certain
threshold (a stopping criterion) is met.

Note that there is another hierarchical clustering called divisive clustering its basic idea
is the same as that of agglomerative clustering except it starts from a single cluster with
all data points and continues by splitting one cluster in to two until every data point has
its own cluster. However, agglomerative clustering is chosen instead of divisive cluster-
ing due to the reason that it has been implemented by different python libraries such as
Scipy and Sci-kit learn and it is easier to reuse the code and customize it than develop it
from scratch. Therefore, in this research, the agglomerative clustering method discussed
in [78] is adapted for topic detection by customizing its euclidean distance function so as
to let it consider the order between the sentences in the transcript. The two main tasks
involved in the CAC process are namely SS and CL where the first computes distance
between data points whereas the later merges clusters hierarchically. These tasks are
discussed in detail in the following subsections.

Sentence Similarity (SS)

In text clustering process, once the sentences are represented in vectors, the first step
to perform is to compute the distance between sentences using a chosen text similarity
measure. There are various text similarity measures available. The literature conducted
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on these measures is presented in Section 2.1.3 with the list of the most common dis-
tance functions for clustering is shown in Table 2.2. However, most applied ones with
both flat and hierarchical clustering approaches are euclidean and cosine distance met-
rics. Euclidean is more appropriate for our approach due to the reason that our chosen
cluster linkage function, Ward’s method, performs well if euclidean is used as a distance
function1.

As discussed in Algorithm 1, to generate an embedding for a sentence the mean of
the vectors of the words occurring in the sentence is used. This may lead to assigning
an appropriate vector for a sentence if most or all of the words in the sentences do not
exist in the vocabulary of the word embedding model that is used by the algorithm.
This in turn may affect the result of the euclidean metric applied to get the semantic
similarity of sentences. Therefore, there is a necessity to somehow handle the properly
unrepresented or unvectorized sentences. Due to this reason, it is required to customize
the distance metric used for computing similarity between sentences. One way to do so
is to consider the order of the sentences in the transcript. It is persuasive enough to say
that the probability that sentences that are neighbors discuss the same topic is much
more higher than those that are written far apart.

Thus, the main purpose of the SS module is to customize the euclidean distance func-
tion in such a way that the order of the sentences in a transcript can also be taken
into consideration as it also plays a great role in the relatedness of the sentences. The
formula that customizes the euclidean metrics is shown in Equation 5.1. This formula,
Distsen, is defined so as to compute the distance between two sentences by combining
euclidean distance (Euc) with a newly defined distance function (In transcript dist).
The formula used to compute Euc between two sentence vectors is shown in Equation
5.2. The In transcript dist between two sentences s1 and s2 defines how close these
sentences are based on the order they are written in the transcript. As shown in Equation
5.3, the In transcript dist function works by counting the number of sentences that
are in between the two sentences and normalizing the result by dividing it by n−2 so as
to make the value lie in the range [0,1] where 0 indicates that the sentences are written
next to each other (i.e. it is very likely that they are semantically similar) and 1 means
one of the sentences is written in the beginning while the other is found at the end of
the transcript (i.e. there is a high probability that they are semantically different from
one another).

The parameters α and β in the distance function Distsen are used to give weights
for the Euc and In transcript dist component functions respectively. Both α and β
take values between 0 and 1 with α = 1 − β this is due to the reason that we need
to keep the value of the main distance function between 0 and 1. The values for these
parameters can be determined either randomly or estimated by referring to the number

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.

linkage.html#scipy.cluster.hierarchy.linkage
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of sentences that are properly vectorized. If many sentences from a transcript are not
properly vectorized, then better to give more weight to the In transcript dist function
(i.e. β > α). Otherwise, it is possible to give either equal weights which is the default
value (β = α = 0.5) or make one of them bigger by conducting experiments and choos-
ing a better value.

The overall process of the SS method which is based on the Distsen formula in Equation
5.1 is displayed in Algorithm 2. The algorithm takes a vectorized transcript (i.e. a set
of sentence vectors) as an input and returns a condensed distance matrix which has the
distance between each pair of sentence vectors in the transcript. The distance matrix
is condensed so as to avoid saving repetitive values (i.e. since the distance between s1
and s2 is the same as the distance between s2 and s1 because of symmetry, it won’t be
saved twice). Besides repetitive values, the distance a sentence has with it self won’t
be saved due to the fact that the value is always zero and comparing a sentence with
itself is not required for clustering anyway. Therefore, condensing a matrix in such a
way helps to save space and also to save time while accessing the stored values.

Distsen(vsi , vsj , α, β) = α ∗ Euc(vsi , vsj ) + β ∗ In transcript dist(vsi , vsj ) (5.1)

Euc(vsi , vsj ) =
√

(vsi1 , vsj1)2 + (vsi2 , vsj2)2 + ...+ (vsin , vsjn)2 (5.2)

In transcript dist(vsi , vsj ) =
(j − i− 1)

n− 2
(5.3)

where s1, ..., sn ∈ S and vsi is an embedding for sentence si where i ∈ (1, n).

Since SE for a given sentence is computed as a mean of its word vectors which are
generated from a word embedding model with a vector space created in a way that
words that are far from each other are semantically dissimilar and those close to each
other are semantically similar, high euclidean distance (Euc) between sentence vectors
created in such a manner implies less semantic similarity whereas small distance indi-
cates high similarity. The In transcript dist distance function is interpreted in a similar
fashion as euclidean distance for the reason that mostly sentences which are near to each
other are semantically similar than those far apart. Therefore, the dist function which is
the combination of these two distance functions (Euc and In transcript dist) is inter-
preted in the same manner i.e. high Distsen value between two sentence vectors implies
that the sentences are semantically less similar whereas small Distsen value indicates
that they are highly similar.
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Algorithm 2 Sentence Similarity

Input:
SentenceEmbedding ← {vs : s ∈ S} . The input transcript as a set of sentence
embeddings
α . A parameter to assign weight for the Euc function
β . A parameter to assign weight for the In transcript dist function

Output:
condensed distance matrix M as {d(vsi,vsj) : vsi, vsj ∈ SentenceEmbedding}

1: procedure SentenceSimilarity(SentenceEmbedding, α, β)
2: k ← 0
3: for each i from 1 to |SentenceEmbedding| − 1 do
4: for each j from i+1 to |SentenceEmbedding| − 1 do
5: M [k]← Distsen(vsi , vsj , α, β) . refer to Equation 5.1, α = 1− β
6: k ← k + 1
7: end for
8: end for
9: end procedure

Cluster Linkage (CL)

In agglomerative hierarchical clustering, there are four well known cluster linkage func-
tions namely single-link, complete-link, weighted average-link, and Wards method []. In
single-link clustering, the distance between two clusters is the shortest distance between
them. The problem with this clustering method is its sensitivity to outliers and incapabil-
ity in dealing with severe differences in the density of clusters. As defined in requirement
FR-1, the proposed system should put together those sentences which are semantically
related together to make a topic. However, since the single-link clustering takes into
consideration only the two sentences that make the clusters come closer without looking
at the rest of the sentences in the cluster, it is not appropriate method to use for the
clustering process in the proposed system.

Complete-link clustering considers the distance between two clusters to be the largest
distance between them. The difficulty with this clustering approach is its high tendency
of breaking large clusters and works less efficiently with convex shaped clusters. This
indicates applying complete-link for creating clusters for transcripts with the purpose of
detecting topics may be put at risk. This is due to the reason that it is possible to have
webinar transcripts that discuss just one or two topics but contain a lot of sentences.
In this case, if we apply the complete-link clustering it may break the cluster to create
more irrelevant small topics which will lead the system to not satisfy requirement FR-2.

On the other hand, weighted average-link clustering takes the average distance between
two clusters as the distance between them. This clustering method is a compromise be-
tween single and complete linkage measures which makes it a better choice than them.
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Despite that, it has its own drawback which is its sensitivity to the shape and size of
clusters. It performs differently with different shape and size of clusters which implies
that it is not possible to get a stable result with this approach.

The other common cluster linkage method is Ward’s method which chooses two clus-
ters to merge at each iteration/level of the hierarchy based on an optimal value of an
objective function. This objective function is referred to as error sum of squares and it
is used to check how costly it is to merge two clusters. There is no best way to choose
the right linkage measure for clustering. In our research, to construct the hierarchical
clustering, ideally both weighted average-link clustering and Ward’s method can be ap-
plied. The appropriate way to pick one among these two linkage measures is to conduct
an experiment and choose the one with a better result. However, since there is a limit
of time for the thesis work to try out both methods, it is better to compare them and
choose one. Thus, the Ward’s method is chosen for our proposed system due to the
reason that it doesn’t have any loose ends as compared to the weighted average linkage
metrics (i.e. the probability that clusters with only one or a few data points is very less).
The Ward’s method [78] defines the distance between two clusters based on the cost
obtained using the objective function shown in Equation 5.4.

Dist(Cu, Ck) =



Distsen(Cu, Ck)
if |Cu| = 1 &

|Ck| = 1

√√√√√√
|Ck|+ |Ci|

T
×Dist(Ck, Ci) +

|Ck|+ |Cj |
T

×

Dist(Ck, Cj)−
|Ck|
T
×Dist(Ci, Cj)

otherwise

(5.4)
where Ci and Cj are the clusters considered for merging, Cu = Ci ∪ Cj , Ck is a

cluster in the current forest different from Ci and Cj , and T is |Ck|+ |Ci|+ |Cj |.

The CAC Algorithm

The CAC process combining both the SS and CL is shown in Algorithm 3. It constructs
the clustering hierarchy iteratively by merging two sentences (data points) at a time. It
starts by creating a forest with |S| number of singleton clusters (i.e. each sentence in the
transcript making their own cluster). Then, it proceeds to constructing the hierarchy by
first merging the two sentences with the lowest distance value in the condensed distance
matrix. After doing the first merge, the recursive linkage function defined in Equation
5.4 will be applied to perform the rest of the merges. At every iteration, except the first
one, this linkage function is used to compute the distance between the newly merged
cluster and the other clusters in the forest. Then, the distance matrix will be updated
with the newly computed distance value and the individual clusters used for merging will
be removed from the forest and the newly merged cluster will be added instead. This
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process continues until exactly one cluster with all the sentences making the root of the
hierarchy is left in the forest.

Algorithm 3 CAC

Input: S . a transcript as a set of sentences S
Output: TreeTopics

1: M ← SentenceSimilarity(SentenceEmbedding, α, β) . condensed distance
matrix

2: Forest← {{Si} ∈ S} . Take all data points as initial singleton clusters
3: TreeTopics ← Forest . All sentences at the leaf of the tree(hierarchy)
4: Cu ← Ci ∪ Cj where Dist(Ci, Cj) is the smallest . Merge the two closest data

points in the forest
5: Update TreeTopics with Cu . add another level to the hierarchy
6: Forest \ Ci and Forest \ Cj . remove used clusters
7: Compute Dist(Cu, Ck), for all Ck ∈ Forest
8: Update M with Dist(Cu, Ck)
9: Repeat Step 4 - 8 Until Forest = ∅

5.2.3. Determining the Optimal Number of Topics (DONT)

One of the challenging tasks in TD is finding the optimal number of topics from a tran-
script. In most TD or topic modeling applications, the desired number of topics has to
be given in prior which is inefficient as it is difficult for users to know how many topics
exist in a transcript. Since the TD system proposed in this thesis work is a clustering
based method, it is possible to address this issue by making use of algorithms which
are designed to capture the optimal number of clusters. As mentioned in Section 2.2.2,
there are three main automatic approaches that can be used for DONT purpose namely
elbow method, average silhouette method, and gap statistic method.

There is no algorithm for DONT which works best in all scenarios; each one of these
algorithms has its own benefits and drawbacks. The advantages and disadvantages of
these methods are presented in Table 2.4. The key problems of the gap statistics method
are the decrease in performance as the clusters separate and the necessity of predeter-
mining the reference distribution by the data analyst. As stated in requirement FR-2 the
system should able to determine the optimal number of clusters with no or less involve-
ment from users. However, in gap statistics method the data analyst has to choose a
reference distribution and there is no easy and effective way to do so. Therefore, it is
not appropriate to apply this method to address the DONT issue.

Average silhouette and Elbow methods are two closely related approaches as mentioned
in Section 2.2.2. Despite that, average silhouette method suits more for clustering which
uses average linkage measure due to the fact that both average silhouette method and
average linkage make use of average proximities [79]. However, as mentioned previously
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for our proposed approach Ward’s linkage method is used so we should not combine it
with average silhouette method to get optimal number of clusters. Rather, we would
like to employ a variant of elbow method which is highly related to average silhouette
method [80] but doesn’t use average proximities.

Note that the variant of the elbow method used in this thesis has its own problems.
As it can be seen from the way the formula is defined there is no way that this algorithm
returns a single cluster/topic containing all data points or a singleton clusters (each sen-
tence with their own unique topic) because it is required to have a left and right value
to compute acceleration. However, despite its incapability of handling the single cluster
cases, it is still the most common elbow variant for hierarchical clustering algorithms
because of its simplicity and high speed. Moreover, in the case of webinars/meetings,
singleton clusters/topics or a transcript with just one topic is not common. So, this
would not be much of a concern for our proposed approach. In addition, as mentioned
in Table 2.4, it is a fast and simple to compute algorithm which is an advantage for the
proposed system.

The algorithm of the employed elbow method works by looking at the largest accel-
eration in jump sizes or distance growth. Given a set of distances generated by the
CAC algorithm, this elbow method chooses the optimal number of clusters by applying
Algorithm 4. The first main step in this algorithm is to compute the acceleration of the
distance values using the formula depicted in Equation 5.5. Once the acceleration is
computed, the number of clusters will be determined by looking at the largest acceler-
ation value and getting the iteration at which this value is obtained (argmax(Acc) in
Algorithm 3) and adding 2 (because acceleration is defined by computing twice - recur-
sively) and finally deducting the result from n (the total number of distances considered
for merging - #iterations).

Acceleration(d1, ..., dn) =
n⋃

i=3

(di − 2di−1 + di−2) (5.5)

where n is the number of merges or distance values.
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Algorithm 4 DONT algorithm using a variant of the elbow method

Input:
Distances {d1, d2, ..., dn} . where n is the number of total merges/iterations and
di is the distance between the clusters merged at ith iteration
Cutting option = ”first” . takes the values ”first” or ”second” representing the
first and the second cutting points respectively, with ”first” as default

Output: (Cut point,Num clust) | Cut point ∈ Distances∧Num clust ∈ (1, n). a
distance where to cut the dedrogram and the number of clusters found at that level

1: Acc = Acceleration(d1, ..., dn) . Refer to the formula in Equation 5.5
2: MaxInd← argMax(Acc) . The index of the maximum acceleration value where

index starts from 1 and goes up to n
3: if Cutting option == ”first” then
4: Cut point← Distances(MaxInd+ 1) . The distance with the high jump
5: Num clust = n−MaxInd
6: else if Cutting option == ”second” then
7: Distances[maxInd]← 0 . Replace the maximum acceleration value with 0 in

order to take the next highest value
8: Cut point← Distances(MaxInd+ 1). The distance with the next high jump
9: Num clust = n−MaxInd

10: end if

5.2.4. Example Work Through

In order to capture the idea discussed above for the TD component of the system,
a simple example is presented as follows. The following textual transcript with 11
sentences is created by taking sentences from other 3 transcripts discussing different
topics. Therefore, this transcript has 3 topics each identified with blue, cyan, and red
colors. The first topic has 5 sentences from sentence 0 upto 4 colored with blue, the
second topic has the next 3 sentences shown in cyan color and the last has the rest 3
sentences in red color.

I work at an artificial intelligence research lab.

We’re trying to create technology that you’ll want to interact with in the far future.

Not just six months from now, but try years and decades from now.

And we’re taking a moonshot that we’ll want to be interacting with computers in deeply

emotional ways.

So in order to do that, the technology has to be just as much human as it is artificial.

I’m here to talk about congestion, namely road congestion.

Road congestion is a pervasive phenomenon.

It exists in basically all of the cities all around the world, which is a little bit surprising

when you think about it.

But as we started to understand the virus more and how it was transmitted, we realized

that that risk had increased its territory.

The highly profiled case of Ryan White in 1985, who was a 13-year-old hemophiliac who
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had contracted HIV from a contaminated blood treatment, and this marked the most

profound shift in America’s perception of HIV.

No longer was it restricted to these dark corners of society, to queers and drug users, but

now it was affecting people that society deemed worthy of their empathy, to children.

Given this transcript, first the vectors for each of its sentences will be generated using
the SE algorithm. Then, the CAC algorithm will be applied to the sentence vectors.
It starts by computing a condensed distance matrix using the SS algorithm with input
α = 0.6 and β = 0.4 (i.e. these values are chosen after trying different other values) and
continues to apply the CL procedure to construct clustering hierarchy. This hierarchy
is shown as a dendrogram in Figure 5.2. The x-axis shows the 11 sentences of the
transcript by their index value where 0 is to mean the first sentence and 10 the last
sentence. The dendrogram indicates that during the first iteration or merge sentence 7
and sentence 8 are merged because the distance between these sentence, 0.172, is the
smallest value in the distance matrix. At the second iteration, sentences 9 and 10 are
merged and it continues like that until all the sentences are grouped in one cluster.

Figure 5.2.: Example dendrogram showing hierarchical clustering

Once the dendrogram is created, the optimal number of topics will be determined us-
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ing the DONT algorithm which takes the distances chosen at each iteration/merge
(i.e. {0.17177548, 0.19435426, 0.19584274, 0.25428059, 0.29953344, 0.31202124,
0.31774081, 0.38787137, 0.54986513, 0.86985459} which is shown as a label on the
dendrogram in Figure 5.2) and produces two alternative values for the optimal number
of clusters with their respective cut points or distances. It first computes the acceler-
ation values which is { -0.0210903, 0.05694937, -0.013185, -0.03276505, -0.00676823,
0.06441099, 0.0918632, 0.1579957}. Then, the cut point or the distance at which the
dendrogram will be cut is calculated by taking the index of the maximum acceleration
value 0.1579957 (i.e. 8) and adding 1 to it to get the index value of the required cut -
point from the distance input which is the 9th value 0.54986513. Finally, the optimal
number of clusters 2 is obtained by deducting the index of the maximum acceleration
value (MaxInd=8) from the total number of merges n = 10. Moreover, as an alternative,
another optimal number of clusters 3 at a cut point or distance 0.38787137 is obtained
by taking the second maximum acceleration value (0.0918632) and doing the calculation
analogously as the way the first optimal number of clusters is obtained.

The result of this process is depicted in Figure 5.3. Note that the acceleration value
and the distance values are reversed in order to draw an elbow shaped line on the graph
- just to keep the actual meaning of the word elbow. The graph on the left shows the
acceleration against the number of clusters in green color and the distance value chosen
during each iteration/merge in blue color. The graph on the right is used to visualize
how the dendrogram is cut by putting a horizontal straight bar at the second cut point
0.38787137 computed above. Besides, it is possible to see that there are 3 clusters at
this cut point by counting the number of vertical lines passing through this horizontal bar.

Looking at the result of the entire TD process for the given transcript, the system
generated the correct number of topics (i.e. 3 ). The first topic is composed of sen-
tences 0 to 4, the second topic has sentences 5 and 6 the third topic consists of sentences
7 to 10. The boundary of the first topic is identified correctly as sentence 0 to 4 but
the third topic has one extra sentence (sentence 7) which was supposed to be part of
the second topic. Even though sentence 7 has been identified as part of a wrong topic,
when you look at the actual sentence it actually is a bit difficult to assign this sentence
to any cluster/topic as it doesn’t clearly share any concept with any of them. In the
ground truth, sentence 7 is considered as part of topic 2 because it was generated from
the transcript where the rest of the sentences of topic 2 come from.
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Figure 5.3.: Elbow and Dendrogram

5.3. Topic Labeling (TL)

TL is the process of interpreting topics using representative terms or phrases based on
their semantics. Different researches [4, 5, 6, 7, 8] have been conducted so far to pro-
pose methods for generating labels for topics as discussed in Section 4.2. The drawbacks
of these methods are presented in detail in Table 4.1. Since the research work entitled
Automatic Labeling of Topic Models [4] is entirely dependent on Wikipedia, emerging
terms for which there is no wikipage can not be used as labels. This may lead to mak-
ing the system not be able to generate labels for emerging topics. The research which
uses summarization for generating topics [5] doesn’t check if the summary generated
for a topic is coherent or not. If coherence is not checked then, unrelated labels can
be generated as options. The ontology-based topic labeling system [6] is dependent
on DBpedia to find connection among concepts of a topic. A topic labeling system
[7] which generates labels for topics identified using LDA, uses the words in the topic
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which impacts the system to not capture the actual underlying meaning of the topics.
The labeling system for hierarchical clusters [8] doesn’t work well for clusters with few
number of data points because it is difficult to find labels unique to such clusters.

In this research, a TL system is designed and implemented so as to address these issues
with the existing systems. The first step inTL is choosing the candidate labels from
the topic sentences using a LG algorithm. The generated set of candidate terms will be
ranked using a ranking method LR which integrates different properties together. The
label generation and ranking tasks are discussed in detail in the following subsections.

5.3.1. Label Generation (LG)

The LG task is dedicated to selecting candidate labels from the set of terms occurring in
the sentences constituting the topic. In this research, topic labels are terms or phrases
that capture the intended interpretation of the topics and have user understandable
meaning. An existing method uses n-grams to generate the candidate labels but it re-
moves those n-grams that do not exist in Wikipedia [4]. On the contrary, in our method,
we do not enforce the labels to exist in DBpedia rather we make sure only nouns and
adjectives with proper meaning are used to construct the labels. A label has a proper
meaning if it is just a one word label which is a noun or a multi-word label starting with
either an adjective or a noun and followed by nouns. The initial set of candidate labels
is created by combining consecutive words provided that they have a proper meaning.
Then, the candidate labels set will be extended by clunking the multi-word labels in
to more single or multi-word meaningful labels. Checking if a label is meaningful or
not helps in avoiding having labels which have no relevance in interpreting topics. For
example, giving the adjective ”little” alone as a label to a topic doesn’t make much sense.

Candidate labels are not filtered out for not existing in DBpedia but ranked instead
so that we won’t lose labels which are unknown to DBpedia but capable enough to cap-
ture the meaning of a topic. For example, the term ‘’artificial intelligence research lab‘’
is a meaningful term to be taken as a label for a topic but it doesn’t occur in DBpedia
and it is made of adjectives and nouns. So, it is better to keep those kind of terms as
candidate labels than remove them. To this end, the LG task is designed as shown in
Algorithm 5 to extract neighboring nouns from sentences of a topic as candidate labels
for the topic.
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Algorithm 5 The LG Algorithm

Input: Cluster ← {s|s ∈ S} . A cluster containing one or more sentences
Output: CandidateLabels . Selected candidate labels for the given cluster

1: All words← words in Cluster . Get all words from the sentences in the cluster
2: Tagged← {(word, pos) | word ∈ All words} . Tag each word with their part of

speech
3: CandidateLabels← ∅
4: label← “”
5: for each (word, pos) ∈ Tagged do
6: if pos = “NN” or pos = “NNP” or pos = “NNS” or pos =

“NNPS” or pos = “JJ” then . Check if the word is a noun or adjective
7: label← label + “ ” + word . Concatenate neighboring nouns/adjectives
8: Continue
9: end if

10: CandidateLabels← CandidateLabels∪{label} if label has proper meaning
11: Chunks← ngrams(label) . get all ngrams out of label
12: CandidateLabels ← CandidateLabels ∪
{chunk} if chunk has proper meaning for chunk ∈ Chunks

13: label← “”
14: end for

5.3.2. Label Ranking (LR)

The candidate terms generated using the LG algorithm needs to be ranked according to
their capability in interpreting the given topic. Once the labels are ranked, the top most
relevant ones will be chosen and returned to the user. A relevance score is computed
for each candidate label of a given topic and the labels will be ranked based on their
relevance score. Different properties are considered when computing the relevance of
a label for a certain topic; namely, Popularity, Term Specificity, Topic Relevance, and
Coherence properties. Each of these properties are discussed in detail as follows:

• Popularity: The popularity of the candidate term in a chosen external knowledge
base (specifically DBpedia) is considered for validating the meaningfulness of the
term. Since candidate label terms are generated by putting together neighboring
nouns, it is required to make sure that the terms are not nonsense and have some
semantics. Popularity of a candidate label l in DBpedia is measured by looking at
the resource r which is labeled with l and counting the number of other resources
(other terms in DBpedia) which are connected to r with an outgoing or incoming
edges. Once the popularity of a label is counted, the result will be normalized so
as to let the value lie between 0 and 1. The normalization is done after counting
the popularity of all the labels. Let t be a topic, Lt the candidate label set of
t, Cl the result of the popularity of the candidate label l ∈ Lt. The normalized
popularity value of l with respect to the topic t is computed by the formula shown
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in Equation 5.6.

Popularity(l, Lt) =
Cl −min
max−min

(5.6)

where min is the Cl value for the least popular l ∈ Lt and max is the Cl for the
most popular label l.

• Term Specificity: Term specificity is defined as how specific the term is regarding
its meaning. The specificity of a term is measured by counting the number of words
it contains. A term with more words is more specific than a term with less words.
Given the frequency of a label l in the topic t as Count(l, t), the normalized term
specificity value of l in Lt in the range between 0 and 1 using the formula in
Equation 5.7.

Term Specifity(l, Lt) =
Count(l, t)−min

max−min
(5.7)

where min is the Count(l, t) value for the least frequent l ∈ Lt and max is the
Count(l, t) for the most frequent l.

• Topic Specificity: A candidate label is more relevant to a topic if it is unique
to the topic (i.e. if it is not used as a label for other topics in the transcript).
In order to compute topic specificity, it is required to check the uniqueness or
importance of each candidate label to the given topic using an appropriate method.
Term frequency and TF-IDF are the common methods to check the expressiveness
or relevance of terms to a given text. Term frequency works by counting the
occurrence of a term in the text. This doesn’t actually tell whether the term is
unique to this specific text because the term can also be equally or more frequent in
other texts in the corpus as well. However, TF-IDF is a more valid method to check
uniqueness since it considers the whole text corpus while computing relevance of
a term to a given text. Therefore, in this research the Term Frequency/Inverse
Document Frequency (TF-IDF) method is employed to compute topic specificity.
The TF-IDF formula stated in Equation 2.1 is used by replacing the concept of
documents with sets of candidate labels and corpus with a transcript. Given a set
of topics t in a transcript T , a set of candidate labels Lt of t, and l ∈ Lt the
TF-IDF formula is rewritten as in Equation 5.8 for the sake of clarity.

Topic Specificity(l, Lt) = TF (l, Lt) ∗ IDF (Lt) (5.8)

where

TF (l, Lt) =
(Number of times label l appears in Lt)

(Number of candidate labels in Lt)

and

IDF (Lt) = log
(number of topics in T )

(number of topics in T with a candidate label l)
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• Coherence: The coherence property is used to check how semantically connected
the candidate labels are with each other. The idea is inspired by Gensim’s ’doesn’t
match’ method which takes out an outlier word from a list of words [81]. This
method works by computing a centeroid of the words by taking the mean the of
the vectors of all of the words and then calculate the cosine distance from the cen-
teroid to each of the words and take the word with highest cosine distance as an
outlier. Thus, based on this method the coherence value of each of the candidate
labels is calculated iteratively. First, the outlier candidate label will be taken out
from the original candidate set and then the algorithm will be executed against
the rest of the candidates and will take out the next outlier. This will continue
until two elements are left in the set from which one will be picked randomly for
the sake of creating a score difference between them. The first-computed outlier
will be given the lowest coherence score (1) and the second-computed the second
lowest (2) and similarly until the last picked outlier which will take the highest
value(the total number of candidate labels). Finally, the coherence score values
will be normalized by dividing each value by the total number of candidates to
have the values lie between the range 0 and 1.

Note that sometimes there can be labels which do not exist in the word em-
bedding model’s vocabulary. In such cases, the labels that do not exist in the
vocabulary are assigned normalized coherence value of 0 which the lowest value
indicating that the label is not important to the topic. It is done like this because
if a label is not found in such a huge vocabulary then the probability that it is
meaningful, as it is created by using an automated algorithm - Algorithm 5, is very
less. Thus, the algorithm shown in Algorithm 6, is used to compute coherence
value to those labels that exist in the vocabulary.

The formula in Equation 5.9 is used to compute the relevance score of a candidate label
l in a candidate label set Lt generated for a given topic t by combing together the
popularity, term specificity, topic specificity, and coherence properties discussed above.
Since all properties may not be equally important for computing the relevance score, a
weight value is assigned to each of them using the parameters α, β, δ, and σ as shown
in the formula.

Relevance Score(l, t) =
αPopularity(l, Lt) + βTerm Specifity(l)+

δTopic Specifity(l, Lt) + σCoherence(l, Lt)
(5.9)

where α+ β + δ + σ = 1

5.3.3. Example Work Through

In the current chapter so far, a detailed discussion on the concept of the proposed TDL
system has been given with an example in Section 5.2.4 showing how the TD component
works. In this section, the same example will be further extended to show how the
TL component creates labels for the topics generated by the system for the example
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Algorithm 6 Coherence

Input:
Lt . The candidate label set for a given topic t

Output:
Coherence

1: procedure Coherence(Lt)
2: VLt ← {Vl | l ∈ Lt} . Vectors of all candidate labels
3: N ← |Lt| . Total number of candidate labels
4: for each i from 1 to N do
5: Centroid←Mean(VLt) . The mean of all the vectors as the center for all
6: CosDist← {Cosine(Vl, Centroid) | Vl ∈ VLt} . The cosine distance

between each label and the centroid
7: Cohe← i

N . The coherent score
8: Coherence ← Coherence + (l : Cohe) where l ∈ Lt ∧ Cosine(Vl) =
Max(CosDist) . Add a label and its coherence result

9: VLt ← VLt \ Vl . Remove the outlier label
10: end for
11: end procedure

transcript. First the labeling algorithm takes as an input the three topics shown in 5.1
from the result of the TD process presented in Section 5.2.4 and generates candidate
labels for each of these topics by using Algorithm 5. Then, for each candidate label the
values of the popularity, term specificity, topic specificity, and coherence properties are
computed using the formulas defined previously. Finally, the relevance score is computed
using the formula in Equation 5.9 with α = 0.2, β = 0.5, δ = 0.2, σ = 0.1. The ranking
of the labels are done using their relevance score i.e. a label with high score being highly
relevant. The top 10 candidates generated for the three topics along with their relevance
score are presented in Table 5.2.
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Table 5.1.: The three topics generated for the transcript given as an example

Topic ID Topic
1 I work at an artificial intelligence research lab. Were trying to create

technology that youll want to interact with in the far future. Not just
six months from now, but try years and decades from now. And were
taking a moonshot that well want to be interacting with computers in
deeply emotional ways. So in order to do that, the technology has to be
just as much human as it is artificial.

2 I’m here to talk about congestion, namely road congestion. Road con-
gestion is a pervasive phenomenon.

3 It exists in basically all of the cities all around the world, which is a little
bit surprising when you think about it. But as we started to understand
the virus more and how it was transmitted, we realized that that risk
had increased its territory. The highly profiled case of Ryan White in
1985, who was a 13-year-old hemophiliac who had contracted HIV from
a contaminated blood treatment, and this marked the most profound
shift in Americas perception of HIV. No longer was it restricted to these
dark corners of society, to queers and drug users, but now it was affecting
people that society deemed worthy of their empathy, to children.
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Table 5.2.: Top 10 labels generated by the TL algorithm for the given example

Topic
ID

Rank Label Relevance Score

1

1 Artificial intelligence research
lab

0.41737490345144734

2 Technology 0.38474980690289473
3 Year 0.33704871659228441
4 Artificial intelligence 0.28988315427652983
5 Research 0.28919008496959919
6 Computer 0.28519668562966516
7 Artificial intelligence research 0.28404157011811398
8 Intelligence research lab 0.28404157011811398
9 Human 0.25456962292339458
10 Month 0.24278744470557279

2

1 Road congestion 0.43604426130690987
2 Pervasive phenomenon 0.41798717402152646
3 Little bit 0.41798717402152646
4 City 0.28000000000000003
5 Bit 0.2244017159804087
6 Phenomenon 0.18623693915665568
7 World 0.15498920587575726
8 Road 0.10927927911294427
9 Congestion 0.054385371226712512

2

1 Contaminated blood treatment 0.41484837984370276
2 Drug 0.34468930536792547
3 Blood 0.29990260977862682
4 White 0.26484837984370274
5 Risk 0.23788525619945111
6 Case 0.23696696263473671
7 Society 0.23166349866065203
8 Treatment 0.22797202409532963
9 Drug user 0.22045213978585748
10 Perception 0.21853601541854006

5.4. Summary

In this chapter, the main contribution of the research work which is a TDL system com-
posed of a TD and TL components is presented. The general architecture or work flow
of the system is depicted in Figure 5.1 showing the interaction among these two main
components of the system. The TD component is developed by adapting an agglomera-
tive clustering technique which is customized by modifying the definition of the distance
measure used to compute distance between data points or sentences. Moreover, being
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one of the research questions, the automatic way of determining the optimal number of
clusters is designed and implemented by adopting the elbow method which is chosen for
its better quality than the other available methods.

The TL component of the system is designed by taking into consideration the valu-
able properties of candidate labels namely, popularity, term specificity, topic specificity,
and coherence. Each of these properties play a vital role in determining the relevance
of a candidate label to a topic. The relevance of a label to a topic is determined by
its relevance score which is computed by summing up the weighted values of those 5
properties for the given label. In order to show how the proposed system works, the
algorithms developed or customized for every task involved in the process are given.
Moreover, an example which illustrates how topics can be detected and then assigned
labels is provided for better understanding of the algorithms of the proposed system.
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In chapter 5, the architecture and design of the proposed Topic Detection and Label-
ing (TDL) system has been presented in detail covering the concept that is behind the
main components of the system. In the current chapter, the implementation details of
the system will be discussed. In general, the python1 programming language is used
to implement the system architecture, to prepare the ground truth, and to perform the
evaluation process. Python is a high-level, general-purpose, dynamically-typed, inter-
preted programming language which is known for scientific computing, data analysis,
AI, and web development. Python is chosen for the implementation of the proposed
system in this thesis because it has extensive libraries for data science such as numpy2,
scipy3, scikit-learn 4, matplotlib5, gensim6, and nltk7.

Besides python being the programming language for the entire system , it is necessary
to describe the implementation details for each component of the system. Therefore, in
the following sections, the libraries used for the implementation of the main tasks of the
components are described.

6.1. Topic Detection (TD) Implementation

Various python libraries have been explored to implement the TD component of the
system. As discussed in the previous chapter, the tasks, namley, Sentence Embedding
(SE), Sentence Similarity (SS), Cluster Linkage (CL), and Determining the Optimal
Number of Topics (DONT), are involved in the process of detecting topics. Therefore,

1https://www.python.org/download/releases/2.7/
2http://www.numpy.org/
3https://www.scipy.org/
4http://scikit-learn.org/stable/
5https://matplotlib.org
6https://radimrehurek.com/gensim/
7https://www.nltk.org/
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in this section, the implementation details of each of these tasks and the TD evaluation
module will be given.

• Sentence Embedding (SE): In order to implement the SE algorithm, Algorithm
1, designed in the previous chapter, the gensim library is used to load the pretrained
word embedding model. Moreover, the numpy python library is imported to work
with arrays and compute mean of vectors.

• Sentence Similarity (SS): When implementing Algorithm 2, Scipy’s pdist8 method
from scipy.spatial.distance package is used to compute euclidean distance. The
euclidean distance is one component of the distance function defined in Equation
5.1 to find distance between sentences.

• Cluster Linkage (CL):The ward cluster linkage function depicted in Equation 5.4,
as described more in Algorithm 3, is implemented using the linkage method from
scipy.cluster.hierarchy package. The result of the clustering process, the clus-
ter/topic hierarchies, is depicted as a dendrogram using the dendrogram library
from scipy.cluster.hierarchy package.

• Determining the Optimal Number of Topics (DONT): The python libraries
matplotlib and numpy are used to implement Algorithm 4 which is used to deter-
mine the cutting point of the dendrogram generated by the Customized Agglom-
erative Clustering (CAC) algorithm, Algorithm 3, to get the optimal number of
topics.

• Evaluation Metrics: The numpy library and the v measure score9 method from
sklearn.metrics package of the scikit-learn library are used to implement the au-
tomated evaluation of the TD system since it saves time to use already available
methods from such libraries than write code from scratch.

6.2. Topic Labeling (TL) Implementation

Similar to TD, different python libraries are used to implement the tasks of the TL
component. Besides using those libraries, an external knowledge base has also been
integrated. The description of the implementation details of this component is presented
as follows:

• LG: To implement Algorithm 5 which generates a candidate label set for a given
topic, the pos tag method from nltk python library is used to get part of speeches
(POS) of words in the topic.

8https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.

html
9http://scikit-learn.org/stable/modules/generated/sklearn.metrics.v_measure_score.

html
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• LR: As discussed in the previous chapter, the ranking of candidate labels involves
four properties, namely, popularity, term specificity, topic specificity, and coherence
properties. In order to implement the popularity property, it is required to use an
external knowledge base which provides a linked data set containing as huge triples
as possible so that information on any term/label can be found in the data set. As
discussed in Section 2.3.1 , DBpedia is the most widely used domain-generic data
set covering variety of topics. Therefore, to implement the popularity property,
DBpedia10is used as a knowledge base and accessed at virtouso11 endpoint using
SPARQL rdf query language through SPARQLWrapper12 python library.

6.3. User Interface

A website is provided to give access to the developed TDL system. Even if there are
many web frameworks for python, flask belongs to the most popular ones. Flask provides
different qualities such as simplicity, flexibility and fine-grained control [82]. Since the
webpages required for the proposed system are not too complicated, it is efficient to use
Flask. Therefore, the website is designed and implemented using Flask13 framework for
python.

There are three main services provided by the website:

• Online TDL: This service is to enable users to access the system online. First, a
user adds a transcript directly on the page and then the system detects the topics
available in the transcript and returns the topics along with their corresponding
labels back to the user. In addition to the actual results, the user can also see
the dendrogram generated during the topic detection process. The relevance score
computed for each label is also presented with the labels. The webpage dedicated
for this purpose is shown in Figure 6.1 with the example presented in the previous
chapter, Chapter 5, to explain how the TD and TL components work.

10http://wiki.dbpedia.org/
11http://dbpedia.org/sparql
12https://rdflib.github.io/sparqlwrapper/
13http://flask.pocoo.org/
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6. Implementation

Figure 6.1.: The webpage to use the system online

• Offline TDL: The other service is to use the system offline using commands in a
terminal and visualize the result on a website. This way a user can use the system
to detect topics and generate labels for multiple transcripts at a time and once
the process is completed the result can be seen on a website. An example of the
webpage which is used to visualize the result offline is shown in Figure 6.2.
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Figure 6.2.: The webpage to use the result offline

• Evaluation result visualization: The last main service of the website is to let
the developer of the system visualize the result of the experiment conducted and
evaluated. At this webage, it is possible to go through each transcript used during
the experiment and see the boundaries of the topics in the ground truth and also
in the result returned by the system. Moreover, it also provides the result of the
evaluation of all of the transcripts involved in the experiment. A screen shot of
this webpage is displayed in Figure 6.3.
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Figure 6.3.: The webpage to visualize the evaluation result

6.4. Summary

In this chapter, the implementation details of the proposed system has been discussed.
The Python programming language is used to write the code for the system. Moreover,
different technologies, tools, and libraries are used for implementing the various parts
of the components of the system. As an optional task, different webpages have been
designed and implemented using flask python framework so as to make use of the pro-
posed TDL system.

The implementation has fully covered all designed components of the proposed sys-
tem. For parts of some of the algorithms such as the CL function of the clustering
algorithm, the ’linkage’ method provided by the scipy.cluster.hierarchy package from
the Scipy python library has been reused. Apart from those already available methods
in various python libraries that can be reused, the main part of the system are written
from scratch. Besides the system being used as a whole, the two main components of
the system, namely, TD and TL can be used by their own; each of them as a sepa-
rate system. Therefore, any one of these components can be integrated with any other
existing system that can make use of them.
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As mentioned in Chapter 1, it is beneficial to have a Topic Detection and Labeling
(TDL) system for webinars which can be used in many fields. To this end, this master’s
thesis study has been undertaken with the main objective of designing and implementing
a TDL system for webinars and meetings. In order to actually determine the relevance
of the study and check whether it has satisfied its requirements, it is needed to do an
experiment and evaluate the findings. Thus, in this chapter, the set of experiments
conducted to validate the proposed TDL approach is presented.

First, the experimental procedure which discusses the data set collection, the ground
truth, and the technical setup for the experiments is presented followed by the evalu-
ation of the main two components, namely, Topic Detection (TD) and Topic Labeling
(TL) of the system separately. The components are evaluated separately due to the fact
that they can exist as an application individually by their own and besides different eval-
uation methods are applied for each of them. Finally, the entire system will be evaluated
by combining the results of its components together.

7.1. Experimental Procedure

In order to do the experiment, collection of a test data, preparation of a ground truth,
and selection of appropriate evaluation metrics have been required. Different strategies
and metrics are used to evaluate the result of the experiment separately for the two main
components of the system; TD and TL. In the following sub sections, we will present
the source of the test data, the ground truth, and the technical setup separately.

7.1.1. Data Source Collection

Two sets of data sets are used to test and evaluate the system; a set of transcripts and
a linked data set. The first is required to test both components of the system whereas
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the later is used by the TL system only.

DBpedia data set

DBpedia1 is a freely available general domain linked data set which contains a set of
RDF triples. This data set is used as an external knowledge base to which the proposed
system, specifically the algorithm designed for the TL component, can be applied so as
to evaluate its performance. This dataset is used online through SPARQL queries during
the development of the system.

Test Data

A set of webinar transcripts were required so as to undertake the experiment. The
source for these transcripts was TED talks2. TED talks have a wide variety of webinars
or videos in different domains such as technology, entertainment, politics, health, social
life, design, and etc almost covering all topics. For this particular experiment, our data
set contains 70 Ted talk transcripts in most of those domains.

7.1.2. Ground Truth

It is quite challenging to find ground truth to test the relevance of the proposed approach
as preparing a ground truth involves identifying the actual topics that exist in each doc-
ument along with their boundaries and also assigning possible labels for the topics. The
most common ways to get ground truths are either to prepare them manually or to
gather transcripts which are already labeled with ground truth. The former is not ap-
plicable because of various reasons. First and foremost, doing it manually for hundreds
of transcripts requires high human labor to detect topics and to find appropriate labels
for the identified topics for each of these transcripts. Besides, even if we let more than
one person prepare the ground truth, it still may not be reliable enough as the sense
of topics depend on the eye of the beholder. The later, it is quite difficult and mostly
impossible to find webinar transcripts which are already properly tagged with topic and
their labels. Therefore, for conducting the experiment in this thesis, the ground truth is
prepared in a way which is semi-automatic.

In our data set each TED talk transcript is tagged with its respective classes or cat-
egories of the nature of the domain or field on which the talk has been prepared. In
order to prepare the ground truth an algorithm has been designed and implemented
which takes a set of transcripts as input and generates as an output a set of docu-
ments which are tagged with topic boundaries. Given a set of transcripts T and a set
of (#topic : #Document) pairs, for each #topic : #Document pair the algorithms
creates #Document number of documents each of which containing #topic number

1http://dbpedia.org
2https://www.ted.com/talks
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of topics. A document d containing #topic number of topics is created from a ran-
domly selected set of #topic number of transcripts T ′ ⊆ T . Each topic is generated by
randomly choosing n number of consecutive sentences from t ∈ T ’. For the evaluation
purpose, using this algorithm, 150 documents each containing 2 topics, 75 documents
each with 3 topics, 50 documents each containing 4 topics, and 25 documents each
one made of 5 topics were created from 70 transcripts gathered from TedTalk. It is
easier with documents created this way to see the actual boundaries of the topics in the
documents.

7.1.3. Technical Setup

The experiments in this thesis will be conducted using MacBook Air (13-inch, Early
2015) OS X EI Captain. The processor of this machine is 2.2 GHz Intel Core i7 and its
Memory is 8 GB. Eclipse framework is used to run the tests.

7.2. Evaluation

Since the two main components of the system can be stand alone systems by themselves,
the evaluation process has been divided into 3 parts. First the result of the experiment
for the TD component is evaluated with the chosen metrics. Then, the result of that of
the TL component of the system has been evaluated. Finally, the system as a whole is
evaluated based on the requirements and research questions specified in the beginning
of the research.

7.2.1. Evaluation of the TD Component

In order to evaluate the performance of the TD component, a two step process is
required. First, a set of experiments has to be undertaken to optimize parameters
involved in the algorithms of the TD component. Then, the actual evaluation of the
component will be conducted using the optimized parameter values. Moreover, before
starting the whole evaluation process, it is required to choose appropriate evaluation
measure(s). Therefore, in this section, first the chosen evaluation metrics are discussed
followed by the experiments for parameter optimization. Then, a discussion on the
result of the experiments will be presented with the purpose of choosing the best values.
Finally, the evaluation will be done for a separate set of transcripts using the optimized
parameter values.

Evaluation Metrics

Since the approach proposed to solve the TD problem is based on a sentence clustering
technique, it is possible to choose appropriate metrics from the cluster evaluation metrics
available. In this study, to evaluate the TD component we have used two evaluation
metrics, namely purity [83] and v measure score3 cluster evaluation metrics used by

3http://scikit-learn.org/stable/modules/clustering.html
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clustering algorithms. Purity is an external cluster quality evaluation technique. It is
designed in such a way that it focuses on the frequency of the most common category
from the reference distribution (i.e. in our case it will be a topic from the ground
truth) into each cluster (topic generated by the proposed system). The formula used to
compute purity [84] is shown in Equation 7.1.

Purity(Ω, C) =
1

N

∑
k

max
j
|wk ∪ cj | (7.1)

where Ω = w1, w2, ..., wK is the set of clusters to be evaluated, C = c1, c2, ..., cJ is the
set of categories and N is the total number of data points/sentences to be clustered.

Even if purity considers penalizing the noise found in a cluster, it does not reward
putting together data points from the same category; if we simply make all clusters
singltons, then we will have a maximum purity value [85]. Therefore, it is required to
also use another clustering technique apart from purity which is able to reward grouping
together data points from the same category. To this end, the metric called v measure -
score is used which is designed mainly with the intention of measuring the closeness
between the result generated by the system and the ground truth. It is defined as the
harmonic mean between the homogeneity and completeness of the clustering result [86].
Homogeneity is satisfied if all of the clusters returned by the system contain only data
points which are members of a single class. Specifically, in our case, homogeneity is
achieved if all the topics contain sentences from the classes from which their transcripts
are collected from. On the other hand, completeness is satisfied if all the data points
that are members of a given class are elements of the same cluster. The values returned
by all these metrics are in the range from 0.0 to 1.0 where 1.0 indicates a perfect result.
The formula used to compute v measure is defined in Equation 7.2 bellow.

V measure score = 2 ∗ (homogeneity ∗ completeness)
(homogeneity + completeness)

(7.2)

Experiments for parameter optimization

In order to conduct the actual experiment and evaluate the result for the TD compo-
nent, the parameters required as an input for the algorithms involved in this component
of the system need to be set first. In total there are six parameters that need proper
value selection. The first is the word Embedding model used by the sentence embedding
algorithm, Algorithm 1, to get word vectors as inputs. The second is the parameter α
used by the same algorithm to determine if a sentence is properly vectorizable or not.
Similarly, the third parameter β is required by this algorithm as an input to decide if
a transcript is vectorizable or not. The forth and fifth ones are α and β in sentence
similarity algorithm, Algorithm 2, to give weight to the euclidean distance measure and
to the in transcript distance functions respectively. The last one, the sixth parameter,
is the cutting option for the DONT algorithm as mentioned in Algorithm 4. In order
to optimize the values of those parameters discussed above, it is required to conduct
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experiments.

Thus, in this section we discuss the experimentation setup and the actual experimenta-
tion result obtained. Note that the the technical setup for the experiment is discussed
in section 7.1.3.

• Experimentation setup: In order to make the number of experiments as small
as possible due to time limitation, the values for the parameters α and β for Al-
gorithm 1 are assigned the value 1. The value 1 for α is interpreted as a sentence
is considered as properly vectorizable if only at least one of its words exist in the
word embedding model. Similarly, the value 1 for β implies that a transcript is
properly vectorizable if only at least one of its sentences is properly vectorizable.
This value is chosen due to the fact that even if most of a sentence’s words do
not exist in the vocabulary of the word embedding model considered, the issue will
be avoided by the In transcript distance function because it enables the system to
assign the sentence to the cluster to which its neighboring sentences belong to.

The word embedding parameter, as discussed in Chapter 5, has two options
Word2Vec and Glove chosen for the experimentation. A summary of the spec-
ification of these two word embedding models is presented in Table 7.1. The two
parameters α and β = 1 − α for the 2 algorithm has been given values in the
range 0 to 1 as 0.1, 0.2, ..., 1. For instance, α = 0.6 and β = 0.4 implies that the
result of the eculidean function will constitute 60% of the main distance function
Dist sen where as the rest 40% will come from the In transcript distance function.
As mentioned in Algorithm 4, ”first” and ”second” are the possible values for the
cutting option parameter and the experiments are conducted using both values.

Word2Vec Glove
File Size 1.5GB 822 MB

Vocabulary
Size

3 million words and phrases 400 K

Training
Data set

100 billion words from a Google
News dataset

6B tokens from Wikipedia 2014
and Gigaword 5

Dimension 300 300

Loading
Time

103.08 seconds 123.6 seconds

Table 7.1.: Information on the pre-trained Word2Vec4 and Glove5 word embedding mod-
els used for the experiment

Therefore, the experiment has been conducted using 100 transcripts/documents
with the combination of the values discussed above for the 6 parameters.

• Experimentation result: The result of the experiment using Word2Vec embed-
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ding model is shown in Table 7.2 and also depicted in Figure 7.1. Similarly, Table
7.3 and Figure 7.2 shows the result with Glove word embedding model.

Table 7.2.: Experiment choices and results using word2vec Embedding model for 100
documents TD component

Parameters V-measure Purity
α in
SS
(Eucli

dean)

β in
SS
(In transcript

distance)

With
optimal
number
of
topics
predefined

Using Elbow With
optimal
number
of
topics
predefined

Using Elbow
first
cut
op-
tion

second
cut
op-
tion

first
cut
op-
tion

second
cut
op-
tion

0 1 50.61 49.92 49.44 85.80 84.08 89.89

0.1 0.9 50.99 49.22 49.29 85.83 84.70 87.95

0.2 0.8 48.38 49.35 47.6 83.85 84.70 86.33

0.3 0.7 52.18 50.48 48.93 85.50 84.32 88.36

0.4 0.6 52.42 52.24 49.93 85.92 85.90 89.04

0.5 0.5 51.28 52.31 49.80 85.51 85.69 89.48

0.6 0.4 53.90 52.48 51.18 86.08 85.43 89.60

0.7 0.3 52.29 51.61 49.64 85.53 84.36 89.07

0.8 0.2 50.71 50.30 48.44 85.21 84.80 87.89

0.9 0.1 31.83 36.12 36.08 77.59 79.62 83.90

1 0 4.78 4.88 8.87 8.87 66 69.11

• Discussion on the Result of the Experiments: The experiments are conducted
with the intention of optimizing the parameters against one chosen evaluation
metric from the v measure and purity metrics. Unlike purity, as discussed be-
fore, v measure considers both homogeneity and completeness when computing
qualities of clusters. Therefore, for such reason v measure has been selected as
a metric for optimization. Nevertheless, since purity plays a vital role in showing
the performance of the boundary detection task of the system, it is also used to
measure the quality of the system.

Looking at Figure 7.1, the evaluation result for Word2Vec, v-measure with the
number of topics predefined option has a maximum value of 53.90% which is ob-
tained at α = 0.4 ( and or β = 0.6). In the same figure, 52.48% is the maximum
v-measure value found at α = 0.6 ( and or β = 0.4) with the elbow method using
the first cutting option. In the same figure, the maximum v measure value 51.18%
for elbow with the second cutting option is found at α = 0.6 ( and or β = 0.4).
On the other hand, using Glove in Figure 7.1, the number of topics predefined
option has the maximum value 52.57% for v measure obtained at α = 0.1 ( and
or β = 0.9). In the same figure, 51.30% is the maximum v-measure value with the
Elbow method using the first cutting option found at α = 0.3 ( and or β = 0.7)
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Table 7.3.: Experiment choices and results using Glove Embedding model for 100 doc-
uments TD component

Parameters V-measure Purity
α in
SS
(Eucli

dean)

β in
SS
(In transcript

distance)

With
optimal
number
of
topics
predefined

Using Elbow With
optimal
number
of
topics
predefined

Using Elbow
first
cut
op-
tion

second
cut
op-
tion

first
cut
op-
tion

second
cut
op-
tion

0 1 50.61 49.92 49.44 85.81 84.08 89.89

0.1 0.9 52.57 51.77 48.99 86.03 85.54 88.57

0.2 0.8 49.47 49.76 47.86 84.69 84.62 87.82

0.3 0.7 50.13 51.30 48.59 85.01 85.52 87.13

0.4 0.6 50.25 50.84 49.8 84.99 84.95 88.31

0.5 0.5 49.78 50.75 49.11 84.74 85.08 88.21

0.6 0.4 51.14 51.08 50.21 85.77 84.58 89.4

0.7 0.3 51.14 50.40 47.4 85.60 84.47 88.15

0.8 0.2 46.29 47.70 43.73 83.19 83.36 86.82

0.9 0.1 29.32 33.05 34.36 76.80 79.23 82.48

1 0 4.27 5.61 11.07 65.23 66.44 74.69

whereas 50.21% is the maximum v measure value with elbow algorithm using the
second cutting option at α = 0.6 ( and or β = 0.21) .

Since finding an optimal number of topics is one of the research questions dis-
cussed in Section 1.3 and in this research the Elbow method is the one proposed
as a solution for this problem, more focus is given to the results obtained with
the elbow algorithm. Thus, the parameters should be optimized based on the
elbow algorithm. To that end, the v measure values for the elbow algorithm are
compared for both glove and word2vec.

In the case of both Word2Vec and Glove, looking at Figure 7.1 and 7.2, you can see
that the difference among the v measure values for α in the range 0 to 0.8 is not
that significant for all the three types, namely, number of topic predefined option,
elbow with first cutting option, and elbow with second cutting option. On the
other hand, the v measure values rapidly decrease as for α > 0.8. Similarly, focus-
ing on the elbow algorithm and comparing the first cutting option with the second
cutting option, besides their graph having same shape as mentioned above, there
is no significant difference between their values as well. In case of Word2Vec, the
mean of the differences of the v measure scores at each α value for the two cutting
options is 1.62. This value is derived by first deducting the v measure obtained
with the second cutting option from that obtained with the first cutting option at
each α value and taking their absolute values and computing their mean. Besides
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Figure 7.1.: V measure and Purity evaluation result for TD component with Word2Vec
word embedding model

the mean, the maximum difference in v measure for the two cutting options is
3.99 found at α = 1.0 obtained by deducting 4.88 (v measure score with first
cutting option) from 8.87 (v measure score with first cutting option) whereas the
minimum difference is 0.07 computed by deducting 49.22 (v measure score with
first cutting option) from 49.29 (v measure score with second cutting option) at
α = 0.1.

Similarly for Glove, the mean of the differences of the v measure scores at each α
value for the two cutting options is 2.287. This value is derived by first deduct-
ing the v measure obtained with the second cutting option from that obtained
with the first cutting option at each α value and taking their absolute values and
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Figure 7.2.: V measure and Purity evaluation result for TD component with glove word
embedding model

computing their mean. Besides the mean, the maximum difference in v measure
for the two cutting options is 5.46 found at α = 1.0 obtained by deducting 5.61
(v measure score with second cutting option) from 11.07 (v measure score with
second cutting option) whereas the minimum difference is 0.48 by deducting 49.44
(v measure score with second cutting option) from 49.92 (v measure score with
second cutting option) at α = 0. This analysis shows that regardless of the word
embedding model used, either glove or word2vec, there is no significant differ-
ence between the two cutting options as the mean values (1.62 for word2vec) and
(2.287 for Glove) are very less.

Despite this analysis, since it is required to choose optimal values for the pa-
rameters, for word2vec the maximum v score measure obtained is 52.48% (with
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the first cutting option) which is better than that of glove’s, which is 51.30%, by
0.2%. Therefore, the parameter values that are used to obtain the value 52.48%
are considered as the best/optimized values. This indicates that, the system per-
forms slightly better if the parameters α and β are assigned the values 0.6 and 0.4
respectively given Word2Vec as the word embedding model and the first cutting
option is chosen for the elbow algorithm. Note that due to the fact that only one
data set is used for the experimentation it may seem that the result is dependent
on the data source used. However, we have tried to make the data set as diverse
as possible by generating transcripts from different tedtalk categories. Besides
this, we have generated transcripts of different sizes and number of topics. Thus,
we argue that the parameter values are not dependent on the data set used.

Apart from using v measure for optimization, purity has also been used to show
the performance of the system regarding the purity of the clusters/topics (i.e.
topic boundaries). When we look at these purity values for the word2vec word
embedding model in Figure 7.1, the same case as in v measure, purity shows no
significant difference for alpha between 0 and 0.8 and it decreases as alpha gets
bigger than 0.8. This holds true in all the three cases namely, number of topics
predefined option, the elbow algorithm using the first cutting option, and the el-
bow algorithm using the second cutting option. However, in case of both word2vec
and Glove in general all the three options together, the maximum purity value of
89.89% has been achieved at α = 0 (and or β = 1).

Note that this value is interpreted as using in transcript distance function alone to
determine the distance between sentences. This doesn’t guarantee the best per-
formance always as topics in transcripts can be mixed up with not only one single
boundary i.e. a topic may come in between sentences of one topic. Therefore, it is
not reliable to just use the in transcript distance function alone (β = 1). Rather it
is required to also consider the actual similarity or distance between sentences. On
the other hand, it is not also a good idea to totally ignore in transcript distance as
it can be seen from the result of the experiments that the smallest values for both
purity and v measure in all cases are obtained with α = 1 (using only euclidean
as the distance function). Due to this fact, you can notice on the graph that, in
case of v-measure, the better values are found in the middle where the values for
the parameters α and β are nearly equal. This is the prove for the reason, which
is v measure considers both completeness and homogeneity while purity doesn’t,
to be taken in to consideration when choosing v measure as the parameter opti-
mization function instead of purity.

Besides evaluating the quality of the TD component, it is sensible to also consider
the speed to discuss the performance of the system. When it comes to speed, it
takes 113.3 seconds to run, including the loading time 103.08 seconds mentioned
in Table 7.1 for word2vec training model, the TD component against a randomly
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chosen input transcript of the average size 482 sentences calculated in Section
3.4. On the other hand, with glove, it takes 128.34 seconds including the loading
time 123.6 seconds to run with the same transcript. For the chosen 100 tran-
scripts/documents for the experiment, in total it took 169.08 seconds with Glove
and 154.8 seconds with Word2Vec model. This indicates that TD takes slightly
less time with word2Vec than with glove. Thus, according to the result of the
evaluation process, Word2vec is preferable both in quality and speed.

Evaluation with the Selected Parameter Values

Once the parameters are optimized, the next step is to evaluate the performance of
the TD component against a separate set of transcripts using the values chosen for
the parameters. As discussed above, the values for those 6 parameters are determined
by conducting a set of experiments. These parameters with their respective optimized
values are presented in Table 7.4.

Table 7.4.: Parameter assignments for TD evaluation

Parameter Values
Word Embedding Model Word2Vec

α in Algorithm 1 1

β in Algorithm 1 1

α in Algorithm 2 0.6

β in Algorithm 2 0.4

Cutting option first

• Test Setup: The evaluation has been conducted by running the TD component
against a data set of 10,000 documents/transcripts which are separate from the
transcripts used during parameter optimization. These transcripts are generated
using the same algorithm designed to generate transcripts for parameter optimiza-
tion. The transcripts are of random sizes covering variety of topics. The technical
setup for this evaluation process is the same as what is mentioned in Section 7.1.3.
The evaluation is measured by taking the v measure score derived for each tran-
script and computing the average (summing up each score and dividing the result
by number of transcripts in the data set) and multiplying the final result by 100.

• Evaluation Result: The result of the evaluation indicates that 76.5% and 69.56%
v measure scores are obtained using the number of topics predefined option and
with the elbow algorithm with the first cutting option respectively. On the other
hand, 87.56% purity is achieved with number of topics predefined option whereas
77.92% is obtained using the elbow algorithm with the first cutting option.
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Figure 7.3.: The TD component evaluation result using v measure and purity

• Discussion on the result obtained: As depicted in Figure 7.3, both v measure
and purity evaluation results indicate that the result obtained using the elbow al-
gorithm (to find the optimal number of topics) is close to the result achieved with
number of topics predefined option. This proves that the elbow variant algorithm
used in this thesis performs well in determining optimal dumber of topics. Besides,
as discussed before, the data sets used in these tests contain different transcripts
which are of random sizes from small to large and most importantly discussing
variety of topics. Given this fact (i.e., the transcripts being diverse) and also both
v measure and purity showing the same behavior, it can be concluded that the
performance of the TD component is stable regardless of the data set used.

The run time of this component is mentioned above while discussing the result
of the parameter optimization experiment and it is proven that the component
takes considerable and appropriate time to run given the technical set up used for
evaluation. To sum up, the fact that the proposed TD system runs in consider-
able time, possess stability in performance, satisfies the derived requirements, and
shows more than average performance as measured using v measure and purity
(i.e., v measure = 69.56% and purity = 77.92% with elbow algorithm), proves that
the component is capable enough to be used for the purposes that it is intended
for which are discussed in detail in Section 1.7.
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7.2.2. Evaluation of the TL Component

Similar to the the evaluation process for the TD component, a two step process is also
required here. First, a set of experiments has to be undertaken to optimize parameters
involved in the algorithms of the TL component. Then, the actual evaluation of the
component will be conducted using the optimized parameter values. As it has been
done for the TD evaluation, before starting the whole evaluation process, it is required
to choose appropriate evaluation measure(s). Therefore, in this section, first the chosen
evaluation metrics are discussed followed by the experiments for parameter optimization.
Then, a discussion on the result of the experiments will be presented with the purpose
of choosing the best values. Finally, the evaluation will be done for a separate set of
topics using the optimized parameter values.

Evaluation Metrics

For testing the relevance of the TL component of the system, it is required to have
a ground truth which contains a set of topics and their respective labels. Since it is
very difficult to find such ground truth, it was necessary to find a way to prepare it.
One of the common and more efficient way to do so is to generate topics and to let
humans label it manually. However, due to the fact that it is time consuming for users
to label topics by themselves, we find the idea of presenting users with candidate labels
much more convincing. To that end, a cross-sectional survey using a questionnaire with
closed-ended questions is prepared. Each question has a topic text and a set of candidate
labels as options to let users choose the ones that they believe better interpret the given
topic.

The questionnaire is made using Google forms6 which is an internet-based program
to gather data. In the questionnaire, a topic is presented as a question and its candidate
labels are listed as check-boxes. Part of the first page of the questionnaire is shown in
Annex A.1. We have tried to include as much variety of users as possible depending on
their area of expertise/profession. Having users from different profession to involve in
the survey helps to get human judgment from different classes of potential users of the
system. For instance, given a topic ( i.e. a set of sentences) and its respective shuffled
list of candidate labels, the human judgment is to choose those labels which are capable
enough to annotate the topic from the list.

Once the results of the survey are collected, the evaluation of the component has to be
computed using an appropriate evaluation metric. F-measure is the standard measure
for evaluating IR and also clustering methods by combining recall and precision tech-
niques. Moreover, for those systems which return top K values like search engine and
recommendation systems, it makes more sense to compute precision and recall metrics
for the first K items instead of all the items. Since a topic labeling system is one of those
applications which return top-K items to the user, it is sensible to compute precision and

6https://www.google.com/forms/about/
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recall for the first K elements. Recall is the ratio of the number of labels assigned to the
topic correctly to the total number of labels that the topic can actually have whereas
precision is the ratio of the number of labels assigned to the topic correctly to the total
number of labels returned by the system. However, recall is not considered for evaluating
the topic labeling system in this research due to the fact that it is required to have all
the topics manually labeled by human and doing so is time consuming. Besides, since
both recall and precision are necessary to compute f-measure, it won’t also be used. This
leads to the conclusion that Precision at K is the only feasible evaluation metric that
can be used for measuring the quality of the topic labeling system as it doesn’t require
manual labeling. Thus, after gathering the human judgment, we have used precision at
k to evaluate the performance of this particular component of the system. Precision is
calculated using the formulas shown in Equations 7.3.

Precison =
#CorrectLabels

#SystemLabels
(7.3)

where #CorrectLabels is the total number of labels which are assigned to the topic
correctly and #SystemLabels is the total number of labels returned by the system.

Experiments for parameter optimization

As in the case of TD, in order to evaluate the TL component, the parameters required
as an input for the algorithms involved in the component are need to be set first. One
of those parameters is the word embedding model parameter required by the coherence
algorithm. The rest of the parameters namely, α, β, δ, and σ are used by the LR algo-
rithm to assign values for Popularity, Term Specificity, Topic Specificity, and Coherence
properties respectively. In order to assign/choose optimal values for these parameters,
experiment has been conducted. Thus, in this section we discuss the experimentation
setup and the actual result obtained in the experiment. Note that the the technical
setup for the experiment is discussed in section 7.1.3.

• Experimentation setup: The word embedding model parameter is set as Word2Vec
due to the result of the experiment in TD evaluation which shows that Word2Vec
performs better than Glove. The parameters α, β, δ, and σ are configured to take
values in the range 0 to 1 as 0.1, 0.2, ..., 1 where the sum of their values must
sum up to 1 (i.e. α + β + δ + σ = 1). For instance, an assignment of α = 0.2,
β = 0.3, δ = 0.2, and σ = 0.3 indicates that Popularity is given 20% weight in the
ranking formula , Term Specificity takes 30%, Topic Specificity is given 20%, and
the rest 30% of weight to Coherence. Given this set of values, 256 combinations
are created which sum up to 1 (100%). Therefore, the experiment is set up to find
the best combination from those 256 combinations which optimizes the precision
values at each k ∈ [1, 5] (i.e. k is from precision at k).

To this end, the survey which is described in detail in the evaluation metrics sec-
tion above has been used to gather human judgment for the purpose of evaluating
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the topic labeling result. Even though having a lot of people to participate in the
survey may seem beneficial, due to the average precision used for measuring the
evaluation, the result doesn’t change much as the number of participants grow.
Thus, we have had twelve people from different area of expertise to participate
in the survey. Given the fact that their profession is diverse, we considered the
number to be good enough.

The questionnaire contains eighteen questions each with a topic and a set of
labels to choose from. Clearly it is an advantage to have more set of questions
but eighteen is already a lot for the users as it is observed during the survey collec-
tion. These eighteen questions are divided into two groups; one with ten questions
for parameter optimization and the rest eight are for evaluation. More number
of questions (ten as compared to eight) is allocated for optimization because it
is better to have as much ground truth as possible to have a stable result for
optimization. The eighteen topics included in the survey are generated from the
tedtalk transcripts using the ground truth preparation algorithm used in the TD
component. Their respective candidate labels are generated using the LG algo-
rithm, Algorithm 5. Since it is not possible to present all candidate labels, we
had to run the LR algorithm against all list of candidates giving equal weights to
all the parameters α, β, δ, and σ. Finally, the top fifteen labels were taken as
candidate labels for each topic added in the questionnaire.

In parameter optimization, the idea is to find the assignment/s that optimizes
the values of the parameters such that the possible maximum precision at k is ob-
tained for most k values in K where K = {1, 2, 3, 4, 5}. Given n number of topics,
a set of 256 combinations/assignments for the 4 input parameters C, and k, total
number of users m, the first step is to compute precision at k for each topic t, for
each c ∈ C by using the formula in 7.4. This formula works by first computing
precision at k per user response and then computes the average by summing up
the values computed and diving the result by m. Then, the next step is to find
those parameter assignments that give maximum precision value by using the for-
mula given in Equation 7.6. It starts by computing the average precision for each
assignment c, by adding up the precision at k values for each topic t and dividing
the sum by n by using the formula in Equation 7.5. At the end, it returns the max-
imum averaged precision value for k and all the assignments that gives that values.

Note that the experiment is conducted only once because it is difficult to find
more people to have multiple surveys and it is time consuming.

AvgPt(t, c, k) =

∑m
j=1 P (t, c, k, j)

m
(7.4)

where P (t, c, k, j) is precision at k computed using the formula in 7.3 with #cor-
rectlabels being labels chosen by user j for the topic t and #systemlabels being
the labels generated by the system with the parameter values c for the topic t.
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AvPc(k, c) =

∑n
j=1AvgPt(tj , c, k)

n
(7.5)

AssignmentsPk
(k) = {AvPkc, c | max

c,AvPkc

C⋃
c=1

AvPc} (7.6)

where k is the level at which the precision is computed, C is a collection of pa-
rameter assignments, c is a single assignment from C, and n is the total number
of topics labeled.

• Experimentation result: Given 256 assignments (|C| = 256) and 10 topics (n =
10), applying the formula in Equation 7.6, we get 36 combinations/assignments
which give the maximum value 52.5% precision at k = 1, 2 assignments with
precision 42.5% for k = 2, 2 assignments with 36.94% for k = 3, 1 assignment
with 34.17% for k = 4, and 1 assignment with 32.67% precision for k = 5 has
been obtained. In total, 42 (36 + 2 + 2 + 1 + 1) assignments are found which
maximizes precision at least at one k value.

• Discussion on the Result of the Experiments: Having 4 number of parameters
with 11 possible values (0 to 1 as 0.1, 0.2, ..., 1) creating 256 assignments/com-
bination, it is difficult to plot their corresponding precision values at each k in a
graph to compare them and interpret the graph. Thus, it is found to be efficient
to just take out those assignments that maximize precision at least at 1 k-values
and choose one from those that maximize precision at more number of k values.
To this end, we ranked the assignments using a two step procedure. The first
step is to give a score to each assignment by counting the number of k values
at which they maximize precision where high score indicates high relevance. The
second step is it to take all those assignments which scored the highest value in
the first step (i.e. those which maximize as much number of ks as possible ) and
rank them by looking at the values of k that they maximize precision at, where an
assignment which maximizes precision at k=i is more valuable than an assignment
which maximizes precision at k=i+1. Finally, we randomly take one among those
which have the highest rank.

In this experiment, given all the 42 assignments that give the maximum precision
values, only one assignment has the highest rank using the procedure explained
above. The assignment maximizes precision at k = 1 and k=3. This assignment
gives the parameters α, β, δ, and σ the values 0.1, 0.5, 0.2, and 0.2 respectively.
Thus, these numbers will be considered as the optimized values for the parameters
used in the LR algorithm. As mentioned above, due to the difficulty in plotting the
results achieved using the different parameter assignments, the procedure followed
in this step doesn’t allow to discuss the actual difference that the assignments
bring in the result of the precision values.
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Evaluation with the Selected Parameter Values

The technical setup for the evaluation is the same as that of the parameter optimization
experiment. The actual evaluation of the TL component has been done using the op-
timized values of the four parameters of the LR algorithm against the second group of
8 questions from the survey. The result of the evaluation using precision at k=1, upto
k=5 is given in Table 7.5 and depicted in Figure 7.4. As you can see in the figure, the
precision has highest value possible at k=1 and it continuously decreases as k goes up
indicating that precision and the value of k are indirectly proportional. This is due to
the way the LR algorithm is designed i.e. when it ranks topics it may give high rank
to those labels which are not of importance to the topic but are either very popular in
DBpedia, gaining high TF-IDF value, very specific obtaining high term specificity value,
or highly topic specific.

You may notice that the maximum precision value (precision at 1) is just a bit more
than average for various reasons. One reason is some of the users participated in the
survey have selected irrelevant terms as labels to some of the topics. It is observed
that some users do not read the topics text entirely rather they just scam it and choose
what ever word they see in the list that they can find in the corresponding topic text.
Some gets tired after answering some questions and choose ”None of the above” as
answers to the questions that come at the end. The other problem is users do not read
the instructions that says ”choose all that apply” and choose only one label for all the
topics. For instance, the responding rate for one of the topics is depicted in Appendix
A.2. If those situations has not happened, the result would have been better than it is
now.

Similar to the process of TD evaluation, besides evaluating the quality of the TL com-
ponent, it is required to also consider the run time to discuss the performance of the
system. Thus, when it comes to speed, it takes 108.93 seconds, including the Word2Vec
loading time 103.08 seconds mentioned in Table 7.1, to run the TL component against
a randomly chosen input transcript of the average size 482 sentences (as calculated in
Section 3.4) which contains 5 topics to be labeled. Given the technical setup used for
evaluation, as shown in Section 7.1.3, the run time is promising to use the component
separately.

To sum up, despite the evaluation result of the component being little more than av-
erage, which happened due to the reasons that are discussed above, the proposed TL
component still is usable for the purposes it is designed for which are discussed in the
Problem Analysis part in Section 1.2. Thus, it can either be used as a stand alone
system or integrated with other systems such as TD.
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Table 7.5.: Precision at k values for k ∈ 1, 2, 3, 4, 5 for the TL component evaluation

k Precision at k
1 54.17

2 41.67

3 37.15

4 33.07

5 30.45

Figure 7.4.: Evaluation of the TL component using precision

7.2.3. Evaluation of the Whole TDL System

Once the main components of the proposed system are evaluated, it is required to check
if the TDL system as a whole satisfies the research questions devised in Section 1.3
and the requirements specified in Chapter 3. To that end, in this section, the answers
provided for each of the research questions and the description on how the proposed
system satisfies the requirements are presented.

The following research questions are answered during this thesis work:

1. How to use sentence clustering algorithm for single-document topic detection?
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• How to adapt an existing clustering algorithm in order to divide a document
into segments or topics ?

A review of the available clustering algorithms have been conducted as shown
in Section 2.2.1 and the agglomerative hierarchical clustering algorithm is
found to be fitting to achieve the purpose of the topic detection process for
the reasons discussed in Section 5.2.2. Therefore, this algorithm is adapted
by customizing the distance function used to generate the distance matrix
used in the clustering process. The distance function is developed by com-
bining an euclidean distance function shown in Equation 5.2 metric with a
newly defined distance function shown in Equation 5.3, which determines the
distance between data points or sentences based on their appearance in the
transcript, together as in Equation 5.1.

• How to determine the optimal number of topics?

As defined in the functional requirements section, Section 3.3, optimal num-
ber of topics in a transcript means the desirable number of topics that should
be extracted from the transcript. That said, the possible ways available to
determine the optimal number of topics are investigated in Section 2.2.2 and
the elbow method is found to be sensible to use for the purpose due to the
reason stated in Section sub:dont. Therefore, a variant of the elbow method
shown in algorithm 4 is adopted and used for the DONT task. As discussed
in the TD evaluation section, Section 7.2.1, it has been proved that in gen-
eral the elbow method performs well with no significant difference with the
topics predefined option.

2. How to use a Knowledge-base to give semantic labels to identified topics?

• How to generate candidate terms/phrases to represent an identified topic?

It showed that taking only nouns as labels is not effective as it leads to
missing important labels. Besides, creating n-grams of all words is not an
option either due to the issue that it will lead to having irrelevant n-grams.
Thus, in this research, candidate labels for topics are generated by employing
an algorithm which makes use of nouns and adjectives that exist in the topic
sentences. First, it takes all the nouns that occur in the topic sentences as
initial candidate labels and then concatenates those neighboring nouns and
adjectives together to create multi-word labels. It makes sure that meaning
less labels are not created by checking the order in which nouns and adjectives
are created.

• How to assign weight to each candidate term used as a label to a topic in
order to rank them based on importance?
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In this research, we have shown that it is required to check the availabil-
ity and popularity of a term in an external knowledge base for the purpose
of labeling a topic with terms which are capable enough to represent the
semantics of the topic. It is experimentally demonstrated that one way to re-
move senseless labels from the candidate set (assigning less relevance score)
is by checking if it exists in DBpeda. As discussed in Section 7.2.1, the result
of the evaluation of the TL component proved that checking the popularity
of candidate labels in external knowledge bases along with the rest 3 rank-
ing properties, namely, term specificity, topic specificity, and coherence has
significant advantage for ranking candidate labels. This is indicated by the
optimized parameters values i.e. popularity is given 0.1 weight, term speci-
ficity 0.5, topic specificity 0.2, and coherence 0.2. This entails that the LR
algorithm performs well when all of these properties are considered during
label ranking with their respective weight values.

Besides analyzing whether the proposed system has answered the research questions, it
is important to investigate to what extent that the system has fulfilled the functional
and non-functional requirements devised in chapter 3 as well. Therefore, the degree
to which these requirements are fulfilled is described as follows with a summary of the
evaluation status of the requirements in Table.

• FR-1 Topic Detection: The TD component of the system is designed and imple-
mented by customizing a clustering technique which enables to create topics by
grouping together sentences which have similar semantics. Therefore, the design
of the system makes sure that a topic is made of sentences and has meaningful
interpretation.

• FR-2 Optimal Number of Topics: As it was discussed in detail in Section 5.2.3,
the proposed system employed a variant of the elbow algorithm, Algorithm 4, to
automatically determine the number of optimal topics. The algorithm returns a
couple of options to choose from where to cut a dendrogram to get an optimal
number. Experiments have been conducted to choose the best one from these
two options. As a result of the experiments, the first cutting option is selected
and used as an optimized value for where to cut a dendrogram. Therefore, this
requirement is fully satisfied with design, implementation and evaluation.

• FR-3 Boundary Detection: The TD component is designed in such a way that
the boundary of every topic where it starts and ends is clearly identified from
the transcript. This is achieved by involving a sentence clustering algorithm for
topic detection which uses sentences as data points or observations such that the
boundaries can be detected simultaneously while detecting topics. The quality of
the boundary detection task of the system is evaluated along with topic detection
evaluation using purity and v measure.
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• FR-4 Topic Labeling: A TL component has been designed and implemented to
generate maximum of 5 labels for topics detected by the TL component. Four
different properties, namely, term specificity, coherence, topic specificity, and pop-
ularity are analyzed to make sure the labels are important to the topic being labeled
regrading to their semantics. Thus, this requirement has been addressed fully with
experiments and evaluation which uses human judgment and precision evaluation
metric.

• FR-5 Utilizing External Knowledge-base: During TL, the system uses an exter-
nal knowledge base, specifically DBpedia, to check if candidate labels extracted
from a topic text are meaningful or not. The popularity of the labels in DBpedia
is used as one parameter to rank the labels according to relevance to the given
topic. This requirement is evaluated as part of the parameter optimization of the
TL component.

• NFR-1 Response Time: The system as a whole, including both topic detection
and topic labeling, takes 121.47 seconds to return topics and their labels for a
randomly chosen input transcript of the average size 482 sentences, as calculated
in Section 3.4, using an operating system with 8 GB 2.2 GHz Intel Core i7 specifi-
cation. It is more than appropriate to say the requirement has been satisfied given
the specification detail.

• NFR-2 Scalability: The system should be capable enough to work regardless of
the size of an input transcript. Based on the algorithms designed for both TD and
TL components, it is theoretically guaranteed that the quality of the detection and
labeling process affected by the increase in size of transcript but it may get slower
as the method employed for TD is a hierarchical clustering technique. Even if it is
theoretically known that size doesn’t affect quality in hierarchical clustering, the
data sets used for the experiments and evaluation are made sure to have different
size of transcripts starting from small to large. This makes the data sets diverse
in size of transcripts.

In the current evaluation, the data set used for TD evaluation contain all type
of transcripts i.e. small-sized, mid-sized, and large-sized transcripts. Thus, the
evaluation is done by taking the evaluation score of each transcript together and
computing their average. However, it is not clear to analyze the result based on
size due to the reason the data set contains all size of transcripts. Despite this,
the performance of the system given the type of transcripts used indicates that
the component performs well regardless of the size of the transcripts.

Nevertheless, the better way to clearly assess the evaluation result based on size
could be to split the data set which contains 10000 transcripts into groups based
on their size range i.e. to generate one data set with only small-size transcripts,
another data set with mid-size transcripts, and one more data set with large-size
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transcripts. This way it would have been either to show the stability of the system
regardless of transcript size.

• NFR-3 The system should always return a result: As it can be understood
from the design chapter, Chapter 5, the algorithms are designed to return at least
a single topic. For instance, in a case where none of the words in the transcript
exist in the word embedding model applied, a topic containing all the sentences
in the transcript is returned.

Table 7.6.: TDL system requirements evaluation status

Requirements Evaluation Status

F
u

n
ct

io
n

a
l FR-1: Topic Detection 3

FR-2: Optimal Number of Top-
ics

3

FR-3: Boundary Detection 3

FR-4: Topic Labeling 3

FR-5: Utilizing External
Knowledge base

3

N
o

n
-

F
u

n
ct

io
n

a
l NFR-1: Response Time 3

NFR-2: Scalability Not fully evaluated
NFR-3: The system should al-
ways return a result

3

7.3. Summary

In this chapter, the evaluation of the TDL system which is designed and implemented
in this thesis has been presented with the purpose of showing the findings of the re-
search. In order to do the evaluation, first it was required to undertake experiments
to optimize parameter values. The experiments and evaluations are done separately
for each component of the system. Then, the system as a whole is analyzed based on
the research questions defined in Section 1.3 and the requirements specified in Section 3.

In the case of the TD component, the result of these experiments demonstrated that the
Word2Vec word embedding model performs slightly better than Glove given their details
in Table 7.1. In addition to quality, when they are compared based on speed, Word2Vec
is again slightly better than Glove as it runs faster. Apart from the word embedding
model parameter, the other parameters α (weight for the euclidean distance) and β
(weight for the in transcript distance) were optimized as well. The experiment indicated
that using either euclidean distance or in transcript distance alone does not give a bet-
ter performance. However, combining them together to determine the distance between
sentences has been proved to be better. Thus, according to the experiment result α
is assigned weight 0.6 and β is given weight 0.4. Once the parameters are optimized,
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the actual evaluation of the system has been undertaken. This evaluation has proved
that this component works properly regardless of the size of transcripts. Besides this, it
has been proved that the component can be used for the purposes that it is proposed
for due to the evaluations results it showed with the elbow algorithm i.e., v measure =
69.56% and purity = 77.92%.

Similarly for TL, experiments are conducted to optimize the parameters α (popularity),
β (term specificity), σ (coherence), and δ (topic specificity). A survey was prepared
to collect users judgment on the topic labeling component. 18 questions in the survey
were prepared by pairing topics with their respective list of candidate labels so that users
can choose those labels that can well interpret the meaning of the corresponding topic.
Then the responses collected for the 10 questions were used as a ground truth to do the
experiment and the rest 8 for the the evaluation purpose. The result of the experiment
has shown that all these properties are required in order to achieve better performance.
The value 0.1 is assigned for α, 0.5 for β, 0.2 for δ and 0.2 for σ. These optimized
parameter values are used to evaluate the component with precision as an evaluation
metrics. Precision at k for k ∈ [1, 5] was computed for each question and the average
precision at k showed that the system has better performance as k goes down.

Finally, the TDL system is assessed as a whole against the research questions and re-
quirements defined for the system. This assessment proved that the system answered all
the research questions as discussed in detail in 7.2.3. In addition, all the requirements
which are specified in the early stage of the system are proved to be satisfied.
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8. Conclusion and Future Work

In this chapter, we provide the summary of the whole thesis work showing its limitations,
findings, and further recommendations that can be pursued as future works. Thus, in
the following sections the conclusion, limitations, contribution, and future works will be
presented.

8.1. Conclusion

It has become a common practice to use webinars for various purposes in different sec-
tors due to their invaluable benefits. Webinars enable companies to have direct contact
with their customers, to reach their target group live and afterwards, to have a more in-
teractive sessions with audiences, to sell their product without investing a lot, and most
importantly to save time and money. Given those benefits, webinars are now widely used
by companies to reach their customers because of those qualities it provides. Besides
webinars, online meetings are also a very important, almost a day to day, activity in
various companies. However, once the webinars are provided it is required to make sure
that those webinars are actually reaching the intended users. Thus, for users, accessing
vital information out of these huge amount of webinars needs to be as simple and as
effective as possible. In order achieve this, it is desirable to have automated systems
which enable users to search using text. Therefore, having a TDL system which detects
topics discussed in webinars/ meetings with a method to label the topics with relevant
terms/phrases would bring enormous advantages in making information retrieval easy
and effective. Having this as a purpose, in this master’s thesis, a Topic Detection and
Labeling (TDL) system for online webinars and meetings has been proposed.

The main goal of this study is to explore the role of clustering algorithms and external
knowledge bases in TDL. The proposed system is composed of two main components,
namely, TD and TL. The TD component was designed and implemented to detect topics
from transcripts which are related in a hierarchical structure by using an agglomerative
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clustering technique. This component of the system has SE, CAC, and DONT modules.
The SE module is intended to compute embeddings (vector representations) for sen-
tences of a transcript whereas the CAC and DONT are applied to create a dendrogram
of topics and to find an optimal number of topics respectively. In order to implement
the SE algorithm, Word2Vec and Glove pretrained models are compared and Word2Vec
is found to be better in providing quality embeddings. The CAC algorithm customizes
the agglomerative clustering method used in Scipy by modifying the distance function
used. A variant of the elbow algorithm, which is found to be effective for the DONT
purpose, is implemented and evaluated.

The TL component was built to generate labels and to rank them as per their rele-
vance to the given topic using LG and LR modules respectively. Meaningful nouns and
adjective-noun combinations are considered as candidate labels by the LG algorithm.
Taking into considerations how semantically close a label is to all other candidate la-
bels (coherence), the number of occurrences of the label in an external knowledge base
(popularity), the number of tokens/words of a label (term specificity), and the TF-IDF
value of a label in the given topic (topic specificity) during ranking candidate labels is
experimentally proven to be better than just ranking with only one of these parameters.
For instance, ranking with just the popularity value gives very less precision as compared
to combining all parameters together.

Two set of experiments are conducted for each of the two components of the sys-
tem. The first one is to train the system so as to optimize parameters required as an
input for the algorithms used in the system. The other is to evaluate the system using
evaluation metrics. For the TD component, 100 transcripts with a ground truth were
prepared to optimize the parameters of the algorithms used in this component. In addi-
tion, the same component was evaluated using the optimized parameter values against
a separate set of 10,000 transcripts and ground truth. V measure and purity are used
as evaluation metrics for the TD component whereas Precision is used to evaluate the
TL component. The result of the evaluation process shows that the proposed system
answers the research question and satisfies the requirement of the system better than
the existing systems.

8.2. Limitation of the Study

• TL evaluation: During the evaluation of the TL component, the topic specificity
property is not properly evaluated. This is due to the way the questions in the
survey are prepared. In order to properly examine the role of topic specificity,
it would be more efficient if the topics that belong to the same transcript were
grouped together so that users may take that into consideration when they choose
labels for topics. However, the topics are presented in rather flat structure showing
no relationship among each other. It has been done this way to avoid making the
questions too complicated for the users who participate in the survey.
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• User interface: Even though user interface is not part of the requirements of
the system, a website has been developed in order to use the TDL system. As
discussed in Section 6.3, this website provides three main services, namely, online
TDL, offline TDL, and evaluation result visualization services. As you may notice
on the webpage in Figure 6.1, which gives the online TDL service, there is a button
to let users upload a transcript. However, this button is not active currently. Thus,
in order to use the online TDL service users have to copy and paste a transcript
text into the text area. The website is not given much focus because it is optional
and not part of the requirement of the system.

8.3. Contribution

The main contributions of this master’s thesis are summarized as follows:

• Applying hierarchical clustering for topic detection by customizing its distance
function. The study experimentally proved that taking the location of sentences
in a transcript (i..e the in transcript distance function) as a parameter for com-
puting their similarity gives better result than just using euclidean distance alone.

• Identifying an algorithm which efficiently determines the number of optimal topics
so as to stop requiring users to provide the number of topics in advance. A variant
of the elbow algorithm has been implemented and evaluated showing a promising
result.

• Exploring the advantages of using knowledge bases in developing a topic labeling
system. It is demonstrated that checking the popularity of candidate labels in
DBpedia helps to determine if the label is not nonsense and have semantics.

• A topic labeling system which considers different characteristics to rank candidate
labels for a topic. The study proved that taking in to considerations TF-IDF
values, coherence computed using cosine distance, term specificity, and popularity
has positive impact on the quality of a topic labeling system.

8.4. Future work

Even though the proposed TDL system meets all requirements, it can be further improved
in order to achieve better quality. Thus, the following directions are pointed out so that
this research can be further pursued.

• Improving the sentence embedding algorithm: In this research, Algorithm
1 has been used to generate embedding for sentences. This algorithms assigns
an embedding by computing the mean of the word vectors of the words in the
sentence. One way to get a better sentence embedding is to train and apply a
deep learning algorithm.
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• Improving the coherence algorithm: The coherence algorithm, Algorithm 6
which is designed to determine the coherence of candidate labels of a given topic,
is dependent on the word embedding model used. This is due to the fact that
the algorithm works by calculating cosine distance which requires words of the
labels to exist in the word embedding model’s vocabulary. If an embedding cannot
be generated for a label, then it will be assigned a coherence value of 0 which
is the lowest coherence value making the candidate label less important to the
given topic. However, not having a label in a word embedding model’s vocabulary
doesn’t always guarantee that the label is the least important. It may be the case
that the label is a newly emerging term or the vocabulary is limited. Thus, it is
one direction to further do a research on to design a better coherence algorithm
that avoids this issue.

• Creating correlation among topics: The system proposed in this thesis work is a
single-transcript/document topic detection. If a user uploads a set of transcripts,
it processes each transcript separately and returns the topics generated for each
of them. However, sometimes users may get interested in finding the correlation
among the topics generated from the entire corpus. Therefore, it may seem vital
to find some kind of hierarchical or flat semantic relation between the topics of
the transcripts.

• Generate topic labels hierarchically: The current topic labeling algorithm gen-
erates labels with no relationship between them. Finding labels with hierarchical
relations helps to identify more generic and specific labels. This can be one area
to do further research in topic labeling.

• Considering terms outside the topic sentences as labels for the topic: The
algorithm designed to generate candidate labels considers only the terms that exist
in the topic sentences. This may lead to missing important labels which do not
exist in the topic sentences but capture the intended meaning of the topic. Thus,
it will be more efficient to extract terms from the topic sentences and find their
common super concepts from external knowledge bases to have them as additional
candidate labels.

• Using topic labels to further optimize topic detection: Once topic labels
are identified, using these labels to further optimize the topic labeling algorithm,
specifically the DONT algorithm, will improve the quality of the topics that can
be detected by the system. One way to achieve this is to group together topics
that share similar labels.
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for topic detection in online reputation monitoring”. In: Proceedings of the 37th
international ACM SIGIR conference on Research & development in information
retrieval. ACM. 2014, pp. 527–536.

[76] Yan Chen et al. “Emerging topic detection for organizations from microblogs”.
In: Proceedings of the 36th international ACM SIGIR conference on Research and
development in information retrieval. ACM. 2013, pp. 43–52.

[77] Karl Grieser et al. “Using ontological and document similarity to estimate museum
exhibit relatedness”. In: Journal on Computing and Cultural Heritage (JOCCH)
3.3 (2011), p. 10.

[78] Fionn Murtagh and Pierre Legendre. “Wards hierarchical agglomerative clustering
method: which algorithms implement Wards criterion?” In: Journal of classification
31.3 (2014), pp. 274–295.

[79] Peter J Rousseeuw. “Silhouettes: a graphical aid to the interpretation and valida-
tion of cluster analysis”. In: Journal of computational and applied mathematics
20 (1987), pp. 53–65.

[80] Jrn Hees. SciPy Hierarchical Clustering and Dendrogram Tutorial. https :/ /

joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-

dendrogram-tutorial/. 2015 (accessed October 10, 2017).

106

https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/
https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/
https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/


References
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A. Appendix

Figure A.1.: Part of the first page of the survey used to collect human judgment for
topic labeling evaluation
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A. Appendix

Figure A.2.: The user responding rate for topic number fourteen
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