
RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

BONN

INSTITUT FÜR INFORMATIK III

Rulect: A System for Extraction,
Representation and Learning of

Relational Patterns on
Knowledge Graph Embeddings

Master Thesis

Reviewer 1: Prof. Dr. Jens Lehmann
Reviewer 2: Prof. Dr. Andreas Behrend

Mirza Mohtashim Alam

June 2023

http://www3.uni-bonn.de/
http://www3.uni-bonn.de/
http://www.informatik.uni-bonn.de/)


Declaration of Authorship

I hereby declare that all the work described within this Master thesis is the original
work of the author. Any published (or unpublished) ideas or techniques from the
work of others are fully acknowledged in accordance with the standard referencing
practices.

Mirza Mohtashim Alam

Signed:

Date: 14.12.2020

i



Acknowledgements
I praise the Almighty Allah for blessing me and providing me the strength to
overcome all the hurdles by making everything easier.

I wholeheartedly thank my supervisors Dr. Sahar Vahdati, Mr. Mojtaba

Nayyeri and Mr. Chengjin Xu. Without their technical and moral support,
it would be tough to finish. I offer my heartfelt gratitude to my supervisor, Dr.

Sahar Vahdati for her tremendous support, care, valuable guidance for shaping
this thesis. I convey my firm gratitude to my supervisor, Mr. Mojtaba Nayyeri

for his idea and knowledge for this research upon which this thesis is mainly based
on. I convey my deepest gratitude toward my supervisor, Mr. Chengjin Xu for
the codebase, upon which the whole thesis is built.

I want to thank wholeheartedly and convey my gratitude towards Prof. Dr.

Jens Lehmann and Prof. Dr. Andreas Behrend for becoming my examiner
for this thesis.

Moreover, I would like to show gratitude towards Prof. Dr. Jens Lehmann for
giving me the possibility to work with his wonderful group Smart Data Ana-

lytics (SDA) during my whole masters period. During all this time, by working
with many beautiful minds, I learned a lot. My heartfelt thank to Dr. Hamed

Shariat Yazdi who conducted the Knowledge Graph Analysis course and
supervised the lab from where I have learned many things about this domain.
Special thanks to my Knowledge Graph Analysis group mate Md Rashad

Al Hasan Rony who helped me to implement many things. I show my gratitude
to Afshin Sadeghi who was co-supervisor in Knowledge Graph Analysis lab
for his support.

I owe so much thanks to loving my father Mr. Mirza Moksudul Alam and
my loving mother Mrs. Taslima Shirin for being my core strengths during all
my life. Without my parent’s love, care, and support, nothing would have been
possible. I humbly thank my dearest wife Karishma Mohiuddin her mental and
life support in every aspect of my life. I also thank her and Md Tansen Khan

for the careful proofreading of this thesis.

My sincere gratitude towards all my family, friends, and well-wishers without
whom it would have been difficult for me to be here.

ii





Contents

Declaration of Authorship i

Acknowledgements ii

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and Related Work 7
2.1 Knowledge Graphs (KG) . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Knowledge Graph Embedding Models (KGE) . . . . . . . . . . . . 9
2.3 A Brief Basic of Machine Learning . . . . . . . . . . . . . . . . . . 10

2.3.1 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Score Function . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Loss Optimization . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Required Technical Background . . . . . . . . . . . . . . . . . . . . 14

2.5.1 Handling Data . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.2 Utilizing ML-related Components . . . . . . . . . . . . . . . 16

2.5.2.1 Basic Operation on Tensor . . . . . . . . . . . . . . 17
2.5.2.2 Torch Autograd Module . . . . . . . . . . . . . . . 17
2.5.2.3 Torch Optim Module . . . . . . . . . . . . . . . . . 18
2.5.2.4 Torch nn.Module . . . . . . . . . . . . . . . . . . . 19

3 The RULECT System 20
3.1 Data Preprocessing Module . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Generation of Mappings . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Splitting the Train, Test and Validation data . . . . . . . . . 23

3.2 Rule Extraction Module . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 KG Triples . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Extract Rules using AMIE+ . . . . . . . . . . . . . . . . . . 24
3.2.3 Filter Prominent Rules Using Threshold . . . . . . . . . . . 25
3.2.4 Grounding Generation . . . . . . . . . . . . . . . . . . . . . 25
3.2.5 Development of Grounding Loss per Rule Ideology . . . . . . 26

iv



Contents v

3.3 Training & Evaluation Module . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Selected Embedding Models . . . . . . . . . . . . . . . . . . 29
3.3.2 Injection of Groundings . . . . . . . . . . . . . . . . . . . . 32

3.4 Leakage Detection and Removal . . . . . . . . . . . . . . . . . . . . 35
3.5 Generation of Test Set per Pattern . . . . . . . . . . . . . . . . . . 36
3.6 Extra Module: Extended version of LogicENN . . . . . . . . . . . . 37

3.6.1 Conversion of grounding . . . . . . . . . . . . . . . . . . . . 37
3.6.2 Fixing first layer . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6.3 Training with dual LogicENN model . . . . . . . . . . . . . 38

3.7 Extra Module: Visualization of Trained Embedding . . . . . . . . . 38

4 Preparation and Extraction 40
4.1 Pattern Extraction from AMIE+ . . . . . . . . . . . . . . . . . . . 41
4.2 Filtering Out Significant Rules . . . . . . . . . . . . . . . . . . . . . 42
4.3 Grounding Generation . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Removal of Leakage From Knowledge Graph Test Set . . . . . . . . 45
4.5 Statistics of Groundings and Leakages . . . . . . . . . . . . . . . . 48
4.6 Creating Test Sets With Relational Patterns . . . . . . . . . . . . . 49

5 Learning Relational Patterns 54
5.1 Starting the KGE Model’s Training Process . . . . . . . . . . . . . 55
5.2 Model Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Fetching Required Grounding . . . . . . . . . . . . . . . . . . . . . 57
5.4 Iterative Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5 LogicENN Extensions in RULECT . . . . . . . . . . . . . . . . . . 62

6 Analysis and Utilization 64
6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . 65
6.1.2 Hyperparameter settings . . . . . . . . . . . . . . . . . . . . 65

6.2 Result and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2.1 Evaluation With Versus Without Rule Injection . . . . . . . 67
6.2.2 Evaluation With Versus Without Rule Injection on Leakage

Free Test Set . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.3 Evaluation With Versus Without Rule Injection on Test Set

per Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Trained Embedding Visualization . . . . . . . . . . . . . . . . . . . 77

7 Conclusion and Future work 79
7.1 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . 80
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Bibliography 82



Contents vi

List of Figures 89

List of Tables 91

Appendix 92



Chapter 1

Introduction

Knowledge Graphs (KGs) are the hyped technology of recent decades which
have changed the entire world of learning methods for Artificial Intelligence (AI).
This technology provides a structured knowledge representation through connected
nodes via edges. In other words, the nodes are representing entities, and the edges
connecting these nodes are denoting the relations. In this way, each true statement
from real-world (Obama was born in Hawaii.) is represented in the structure of
triples such that (Obama(entity), wasBornIn(relation,Hawaii(entity))). Each of
such triples in a KG consists of a head (entity), relation, and tail(entity). This
simple data representation has revolutionized tasks based on modern AI such as
question answering, link prediction, information retrieval and recommendation
system. Despite this huge success, KGs suffer from incompleteness problem by
nature. All of the missing information in a KG is considered as unknown under the
open-world assumption. Several approaches have been proposed by the machine
learning community in order to perform graph completion. One category of such
models which got a lot of interest recently (due to their performance) is Knowledge
Graph Embedding models (KGE models). KGEs are a set of learning models that
are fundamentally used for link prediction. Such models preserve information of
KGs (represented in symbolic way) in latent feature space (represented in tensors
and vector ).

One of the core challenges of KGEs is their capability level in capturing semantic
similarity and learning relational patterns (i.e., implication, symmetric, inverse,
asymmetric, transitivity) . Generally, relational patterns reside in a KG by nature
and can be considered as one of the vital characteristic. However, the extent to

1



Introduction 2

which KGE models are able to learn relational patterns is critical for their per-
formance and accuracy level. This ability directly comes from the design of the
embedding models both in the score function and loss function. Authors of [1] pro-
vide the name a KGE model where namely TransE [2]. According to [1], TransE is
unable to capture one-to-one, many-to-many, one-to-many, and reflexive pattern
[3]. Moreover, TransE is not able to encode symmetric patterns [4]. On the other
hand, KGE models like RotatE [4] and ComplEx [5] have the ability to capture
relational patterns. RotatE can encode and learn patterns such as symmetric,
composition, inverse, and asymmetric [4]. ComplEx learns about asymmetric pat-
terns but is unable to capture composition [4]. Thus, the external injection of
such relational patterns can be helpful for KGE models [6]. A portion of this
thesis is published in [6]1, and shows the effect of inclusion of relational patterns
and leakages in RotatE and TransE.

Beside the model design of such KGEs, there are also other factors which can
influence the encoding ability of relational patterns. One of the major factors
is the injection of logical rules; we call it “rule injection” in order to facilitate
KGEs in this regard. Although there are many of the individual KGE models
that one evaluate in terms of relational patterns encoding by rule injection, a
dedicated framework which can automate this process for evaluation of state-of-
the-art KGEs is still missing. This thesis aims at building a system RULECT,
where inclusion and learning of such relational patterns can be performed along-
side of training KGE models. The implementation vastly relies on PyTorch [7],
Numpy [8], Scikit-Learn [9], Pandas [10] [11], and Scipy [12]. This system is con-
sidered as an interactive module, where the required information can be provided
(i.e., the hyperparameters, which model should be trained, whether to train the
model with rule injection or not, etc.) before the training begins. In this case,
both model parameters, namely embeddings and relational patterns, are learned
by the KGE model. In this thesis, by saying about inclusion of rules or injection
of rules, we mean inclusion of relational patterns in KGE models.

1 The Author of this thesis is the first author of this paper. This paper is accepted, presented
and in the proceedings of Workshop of Knowledge Representation and Representation Learning
co-organized at ECAI Conference, 2020.
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1.1 Problem Statement

A study related to the inclusion of rules in the popular KGE model needs to be
done to identify the learning effect of the KGE models. The community does
not cover until now is an extensive study of rule injection to aid the learning
phase and the effect of leakages (covered in the upcoming chapters) among the
test data considering the inference power of KGE models. Throughout this thesis,
the inclusion of relational patterns refers to the injection of rules or simply rule
injection.

Rule injection is a vast new domain for the research area of KGE models. This
research aims to demonstrate the inclusion of relational patterns on famous KGE
models such as Distmult [13], RotatE [4], ComplEx [5], TransE [2] ,TransCom-
plEx [1] and LogicENN [14]. A part of this study [6]2 already shows the effect of
rule injection in two popular KGE models: RotatE and TransE. A reinvestigation
with other hyperparameters for these mentioned models with more datasets and
further investigation on other embedding models such as TransComplEx, Dist-
mult, ComplEx, and LogicENN is conducted further in this research. Firstly, a
comprehensive study has been conducted to learn the effect of rule injection in
KGE models.

Secondly, the development procedure is demonstrated for creating leakage-free test
sets, which is briefly described and investigated for TransE and RotatE in [6]3.
A further comprehensive investigation has been done on the performance of the
mentioned KGE models on the leakage-free test data. The notion of leakages and
creation of leakage-free test files are discussed in chapter 3 and 4.

Thirdly, a further investigation has been performed on the same trained models,
if only triples of specific relations (relation premise r which participates in the
inverse, symmetric, implication, and reflexive rules in the training set) are kept
in the test file. The generation process of these test files per pattern has been
discussed in chapter 3 and 4.

2Please see footnote 1
3Please see footnote 1
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1.2 Research Questions

Based on the problem statements, three research questions have been formulated.
To answer these, specific evaluations need to be performed. The research questions
that this thesis is targeting to answer are the following:

Research Question 1: Can we leverage injection of logical rules in the KGE
models towards increasing their performance?

To achieve this, the rule injection should be done alongside training the KGE
models. These rules can be transformed as groundings, which are to be obtained
from those respective training data. These groundings need to be prepared so
that they are injected and learned in parallel during the training process of KGE
models.

Research Question 2: What can be the effect of rule injection in KGE models
for leakage-free test set?

Removal of leakages from the test files can be achieved by searching for specific
patterns from the test set’s groundings. For an example the grounding pattern
of implication rule is defined by [h, t, r1, r2] for a particular premise (h, r1, t) and
conclusion (h, r2, t), in the training set. Here, r1 is considered as relation premise
and r2 is considered as relation conclusion for implication rule. Searching for the
mentioned (h, r2, t) in the test set would be considered a way to find an implication
leakage. These leakages should be removed for all the four mentioned rules (inverse,
implication, equivalence, and symmetric) from the test data to obtain a leakage-
free test set.

Research Question 3: Can rule injection be helpful when only specific
patterns appear in the test set?

To consider specific patterns in the test set, only those relations for which the rules
(symmetric, implication, inverse, and reflexive) appear are considered in the test
set. All the other triples which do not contain these relations should be removed
from the test set. Finally, test sets with four different patterns (reflexive, implica-
tion, symmetric, and inverse) need to be obtained. Only focusing on the topmost
of each relation type would yield a better test set considering those patterns.
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1.3 Thesis Structure

In this thesis, the contribution can be generalized as follows.

1. Overall system development of RULECT: A generalized system of
KGE models with rule injection module has been developed for easing injec-
tion of logical rule alongside the training of KGE models.

2. Grounding Generation from relational patterns: AMIE+ [15] has
been used to mine rules from a particular KG. Using these mined rules
groundings were fetched by putting a threshold based on their importance
level.

3. General loss function for groundings: A general loss function for each
mentioned type of relational pattern (groundings) has been developed, which
can calculate the grounding (groundings are covered in chapter 3) losses.

4. Utilize the grounding losses for each rule types in training: Modifi-
cation in the training phase of KGE models is done for rule injection. Thus,
they are able to learn from the relational patterns alongside of their regular
learning process. These models are considered as rule injected KGE mod-
els when the relational patterns are injected as form of groundings. The
mentioned KGE models use a general rule loss function (described in chap-
ter 3 in more depth) except LogicENN. During the training of LogicENN,
grounding losses developed for each of the rule types is used from [14], and
it is different from the general loss function from the other models (RotatE,
Distmult, ComplEx, TransComplEx and TransE).

5. Leakage identification and removal from the test set of popular

datasets: Famous datasets like FB15k [2] and WN18 [2] contain leakages,
which posses the ability to make the inference task trivial, a further inves-
tigation has been concluded to figure out whether removal of leakage in the
test set has any impact on performance for the rule injected trained model.

6. Investigation on trained model performance on test sets per pat-

ternA further evaluation of test sets per pattern has been conducted. Gener-
ation of such patterns has been briefly discussed in chapter 4. This evaluation
for the identification of the fact where the rule injected model performs well
or not on these versions of test sets is another contribution of this research.
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7. Performance evaluation of RULECT: Investigation has been performed
to observe the effect of rule injection in KGs such as‘ FB15k [2], WN18 [2],
FB15k-237 [16], Kinship [17] and UMLS [18]. From the github repository4

of ConvE [19] many of the mentioned datasets are collected.

8. Few additional modules: Few additional modules: 1. an extended ver-
sion of LogicENN [20]5, and a visualization module from trained embedding,
which is described in [21]6 has been integrated in RULECT.

The whole thesis structure has been divided in a way that every chapter explains
the core parts. Further, the subparts are explained cohesively. In chapter 2, an
overview of the knowledge graph and embedding model has been briefly discussed.
The technology and tools needed to build such a system and its internal modules
are briefly discussed with examples. In chapter 3, the overview of this thesis’s
methodology is briefly discussed. This chapter provides the overall idea of this
whole thesis (preparation, injection, leakage identification, extraction, etc.). The
methodologies are described through both figures and algorithms in order to have
clear idea. In chapter 4, the implementation details of the Rule Extraction

module is discussed. Additionally, the implementation details of leakage detection
and removal is also discussed in this chapter. Moreover, the creation of different
versions of test sets based on rule patterns is demonstrated in this chapter as
well. Chapter 5, provides the implementation details of Training & Evaluation

module of RULECT. This chapter discusses the injection process while training
the KGE models. Chapter 6, discusses about the obtained performance in order
to answer each research questions. Finally, in chapter 7, a brief discussion about
the research outcomes and the future direction has been generalized.

4https://github.com/TimDettmers/ConvE
5Author of this thesis is a co-author of this paper. This paper is currently under review at

Transactions on Pattern Analysis and Machine Intelligence journal
6Author of this thesis is a co-author of this paper. This paper is published at IEEE Access.



Chapter 2

Background and Related Work

This chapter discusses about the background of the Knowledge Graph, Knowledge
Graph Embedding models, related works, and the required technical backgrounds.
In this chapter, at first a brief discussion about Knowledge Graphs with example
has been done in section 2.1. A basic understanding of embedding models (KGEs)
is demonstrated in section 2.2 since KGEs deal with Knowledge Graphs. This
section can aid the preliminary learners about KGE models. Later, some required
basics of Machine Learning are covered in section 2.3. A good review of KGs on
Machine Learning can be obtained from [22]. In section 2.4, related works which
deal with rules and embedding models are notified. Later, in section 2.5, some of
the required technical background In section 2.5, a discussion about the technical
part (mostly implementation tools, coding languages, and aiding libraries) are
demonstrated. Many of the concepts of this chapter are inspired from [23] [24].
Structure of this chapter also follows [23].

2.1 Knowledge Graphs (KG)

A Knowledge Graph is a particular type of knowledge base where relations between
the entities are preserved. More specifically, each instance of a KG consists of head
(h), tail (t), and relation (r). According to the author of [24], an early version
of the Knowledge graph was built by R. H. Richens, who did pre-programming
for mechanical translation using such types of nodes linking with respective rela-
tions [25].

7
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According to the authors of [26], a mathematical structure was initially given
by [27], where the notion of connectivity with edges between the vertices as knowl-
edge units is presented. Author of [24] also mentioned about another research [28]
where a more structured way has been incorporated for representing graphs. Here,
the authors represented an outline of scientific knowledge in a graph-like structure,
which paved the way for elaborating the role of the textual analysis [28].

KG data is represented in a triple like format. A particular triple from KG contains
a head (h), tail (t) and a relation (r). The whole KG is connected by such triples.
This format is also known as subject (s), predicate (p) and object (o). Head/sub-
jects or tail/predicates are also known as entities or nodes. Relations/predicates
connecting entities/nodes can be denoted as edges between the nodes.

Figure 2.1: An generic example of a knowledge graph

.An example knowledge graph is presented in figure 2.1. In this figure, we can see
that entities (Student, John, University, Semester ticket, Germany, Clara, Europe)
are represented as nodes and relations (has, is a, goes to, is in, Applies in, Lives
in, Friend of) are stated as the connection between the nodes.

Author of [24] and [23] mentioned some of the important and most useful KGs
which are: DBPedia [29], Freebase [30], WordNet [31], and YAGO [32]. Google
announced their knowledge graph in 2012 in order to enhance the performance of
their search engine [33]. Upon performing a search activity in the google search
box, not only we get the particular entity that we want, but also other related
things emerge as well. This can happen only due to google has a strong Knowledge
Graph trained in their possession. This can be easily demonstrated in Figure 2.2.
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Figure 2.2: An example of Google search for a particular entity
.

It can be observed that all other similar or connected entities are coming at the
bottom right corner of figure 2.21.

2.2 Knowledge Graph Embedding Models (KGE)

The aim of KGE models is to preserve the information of the knowledge graph
in continuous latent feature space. RotatE [4] and TransE [2] are examples of
two popular KGE models. These embedding models learn to capture semantic
similarities of each node and the underlying patterns. The input data in the
embedding models are RDF triples, which is, in fact, a KG. The algorithm learns to
capture the semantics of the information. Thus, the model parameters are trained
to predict unknown facts. The entities e and relations r are mapped to a continuous
latent feature space (also called embedding space). Similar to machine learning
and deep learning models, as they learn weight vectorW , these embedding vectors
are learned while training KGE models. A trained KGE model can later be used
to predict unknown facts. Author of [23] demonstrates the three essential training
steps for KGE models provided in [34]. Based on these, a general training of KGE

1This figure is generated by taking a screenshot from author’s personal computer of an activity
of searching in the Google search-box
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models can be described in algorithm 1. In this algorithm, at first, initialization
of the required hyper-parameters, and defining the score function (described in
subsection 2.3.2) have been done. In the training loop, batches of positive and
negative triples are generated. After calculating the loss based on the positive and
negative triples using a suitable loss function (discussed in subsection 2.3.1), the
optimization (described in subsection 2.3.3) has been done. Thus, the embedding
vectors are updated by backpropagation. The training takes place until the loss
has been minimized.

Algorithm 1: Learning procedure of a general embedding model
Map all the entities e from entity set E and relations r from relation set R to
a unique embedding space. First it is assigned in a random fashion.
Initialize a suitable learning rate α
Define KGE model’s score function f(h, r, t) to score the plausibility of each
triple in the KG.
do

Generate batch of positive triple P = (h, r, t) and their corresponding
negatives N = (h′, r, t′) by either corrupting head or tail.

Score positive triples Pscore = f(h, r, t)
Score negative triples Nscore = f(h′, r, t′)
Calculate Loss based on Pscore and Nscore
Update the embedding vector by performing backpropagation. α.

while Minimum loss is achieved

One of the applications of the KGE models is predicting missing link. It can be
observed from figure 2.1 again that John clearly lives in Germany because he is
studying at a university which is German. The missing link is given as a dotted line
between John and Germany. Moreover, it is also observable that John is a friend
of Clara. Clara goes to University and also lives in Germany. Observing such
a similar pattern can lead to an accurate prediction of the missing link between
John and Germany. Other significant applications of KGE models include question
answering, recommendation systems, and information retrieval.

2.3 A Brief Basic of Machine Learning

Since the KGE models heavily relies on Machine Learning, it is necessary to cover
some basics of Machine Learning models first. In machine learning, a program is
to learn task T , with experience E using some performance measure P [35]. To
predict a function f(X), where X can be considered as the feature vector and the
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input of the model. The core task is to learn about the feature vectors in such a way
that it can predict correctly on the unknown data or unknown feature vector. The
dataset with which the model is trained is called the training set. After successful
training, the model can predict unknown data or the test set. Machine Learning
can fall into several categories: supervised learning, unsupervised learning, semi-
supervised learning, reinforcement learning etc. In supervised learning, the model
or the algorithm is aware of the labels or output of the feature vectors. However,
these labels are not present in unsupervised learning (i.e., clustering problem).
Semi-supervised learning has both labeled and unlabeled data. Most of the KGE
models relies on supervised method of learning.

Figure 2.3: Core concepts of Machine Learning

.

2.3.1 Loss Function

In general, loss function is a way to determine the difference between the machine
learning model’s predicted output and the true label for the feature vectors. This
difference is called error E or loss L. The error or loss needs to be minimized
in order achieve a better prediction model, which means the prediction should be
very close to the true labels, though we need to be careful with the term overfitting
(model is not very well generalized on the feature vectors). Initially, the error tends
to be very high while training. Eventually, it decreases with time as the model
learns. An example of a common loss function is mean squared error (MSE)2.

2https://en.wikipedia.org/wiki/Mean_squared_error
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2.3.2 Score Function

The score function of an ML model refers to a function f which does the necessary
calculation to predict the output the feature vectors X. Depending on the problem
statement, this output can be a class (in case of classification problem) or a real
value (in the regression problem). Higher accuracy or performance determines the
closeness of the predicted score with the actual one. This is a key indicator of the
wellness of the learning for ML models. The idea is to make the model generalized
on the training set so that it can predict the unknown data with high accuracy.
In KGE models, as depicted in algorithm 1 we have both true and corrupted
triples. Generally, true triples tend to get higher scores than the corrupted ones.
The positive scores and negative scores based on true and corrupted triples then
provide a pathway to calculate the overall loss.

2.3.3 Loss Optimization

The main task of the optimization process is to minimize the error or loss during
the training process. Some example of optimization algorithm which is commonly
used in this domain are: gradient descent [36], adaptive gradient descent [37], RMS
prop [38] [39], Adam [40] etc. In this section, a very brief general optimization
technique named gradient descent will be discussed. Gradient descent is the most
common and popular optimization techniques to optimize neural networks [41].
The core idea of gradient descent is to minimize the loss or objective function by
updating the model parameters in the opposite direction of the gradient [41]. The
model parameters or weights W can be treated as vectors, which is learned during
the training phase. If the model’s score function is defined by f(X,W ), where X
is a feature vector and W is considered as weights or model parameters. Gradient
descent provides a way to find optimal model parameters W which minimizes the
loss function L by doing nearly correct predictions upon utilizing the feature vec-
tors X. The loss function then can be stated as, L(f(X,W ), Y ). As demonstrated
in [41] and [23], the general steps of the gradient descent algorithm can be stated
in algorithm 2. In this algorithm, the model parameters are first initialized, then
the gradient is calculated based on a defined loss. Then the weights are updated
using W − α ∗ gradient formula until we reach minimum loss.
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Algorithm 2: Gradient Descent Algorithm
Initialize learning rate α and the model parameters W
do

Use the score function, f to predict output using X and W
Do gradient calculation, gradient = evaluate_gradient(L(f(X,W),Y)
Do weight update, W = W − α ∗ gradient

while Loss is minimized

2.4 Related Works

This section provides a discussion about related works. For rule extraction, many
frameworks have been established. Name of some rule extraction modules in-
clude ALEPH3, AMIE [42], AMIE+ [15], WARMR [43] [44] [45], WARMER [46].
AMIE supports open world assumption and mines the rules from RDF dataset
efficiently [42]. Additionally, AMIE+ is optimized to extract rules from big-
ger KGs [15]. WARMR uses inductive logic programming to find out frequent
queries [43]. WARMER is an extention to WARMR and supports wider range of
queries over arbitrary relational databases [46].

There are a handful of software packages which incorporate training and evalua-
tion of KGE models. PyKeen [47], OpenKE [48] are two examples of such software
packages. Currently, these software solutions do not support the injection of rules
while training. This research aims to utilize the extracted rules from a rule ex-
traction framework described, such as AMIE and perform rule injection in popular
knowledge graph embedding models.

LogicENN [14] is a specialized neural network architecture based KGE model
which can inject rules in the training phase. Though core idea for injecting rule
while training has taken from LogicENN [14], the implementation of LogicENN
does not inject rules in other state of the art KGE models. Rule injection process
in state of the art KGE models is also done in [24]. Though the approach is similar
but they are built on the entirely different codebase. The approach of [24] does
not contain the leakage detection, removal and generation of test set per pattern,
which is vital parts of this thesis. Additionally, it does not have a separate module
which can generate those relational patterns or groundings to inject.

3http://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph_toc.html
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2.5 Required Technical Background

For the technical part, it is required a vast domain of technical knowledge, es-
pecially one needs to gather knowledge regarding useful python libraries (i.e.,
core python4, Numpy5, Pandas6, Pytorch7 and Scipy8). Each of these libraries is
discussed very briefly in this section to show the researcher a glimpse of the tech-
nologies needed to start such research. It is vital to know how to deal with text or
tab-separated data in RDF [49] format (i.e., extraction, manipulation, etc.). To
achieve this, knowledge of NumPy and Pandas is required. NumPy is a widespread
and well-known python package for numerical computation. The benefit of using
NumPy is huge since it enables numerical computing a lot easier than it should
be.

2.5.1 Handling Data

For handling data, specifically, NumPy and pandas have been used throughout the
whole research. Handling data is needed through the following processes: reading
data, rule extraction, grounding generation, data pre-processing.

In figure 2.4, some basic operations are performed, such as creating matrices with
random numbers, their slicing and element-wise multiplication, etc. Pandas have
also been utilized in this research to make the data-related task a lot easier.

4https://www.python.org/
5https://numpy.org/
6https://pandas.pydata.org/
7https://pytorch.org/
8https://www.scipy.org/
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Figure 2.4: An example of a basic operation of numpy

Pandas is a popular open-source library for python. Even for a beginner in Data
Science, pandas can be regarded as a handy tool for Reading, writing, preprocess-
ing, and manipulation of data as it makes everything easier. As an example, we
can see that from figure 2.5, reading data becomes how much easier with pandas.
The example also clarifies that querying from a pandas dataframe table is very
simple, fast, and effective.

Figure 2.5: An example of a basic operation of Pandas
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These advantages have been a huge motivator for choosing pandas for this research.
With the usefulness of pandas, preprocessing and manipulation of data became a
lot easier, making the research progress in a deliberate manner.

2.5.2 Utilizing ML-related Components

To deal with Machine Learning related stuff, two libraries are used throughout
this research, are: Scikit-Learn [9]9 and PyTorch [7]10. Scikit-Learn is Machine
Learning library consisting of huge amount of machine learning algorithms, pre-
processing techniques, model evaluation process to aid researchers and machine
learning developers around the globe. A newbie can easily run and deploy ma-
chine learning algorithms on data and predict things right away, which makes this
tool a norm for early-stage machine learning researchers. An example of fitting
training data to a machine learning model is shown in figure 2.6.

Figure 2.6: Fitting data to Machine learning model through Scikit Learn

Due to such rich prepared machine learning toolboxes being available in Scikit-
Learn, any machine Learning related research or project can achieve greater heights.
Another example which comes in handy every time is splitting up training and
test set. It has been demonstrated in figure 2.7.

9https://scikit-learn.org/stable/
10https://pytorch.org/



Background and Related Work 17

Figure 2.7: Splitting dataset into training and test set with scikit learn

Another significant library used throughout this research is PyTorch. PyTorch is
a widely used machine learning and deep learning framework which is developed
by Facebook. PyTorch can utilize Graphics Processing Unit (GPU) to fasten
up the computing. PyTorch’s libraries provide powerful support to building up
customizable neural network models instantly.

2.5.2.1 Basic Operation on Tensor

The basic operation on tensor is very common in PyTorch, and it even utilizes
GPU resources through CUDA technology. A basic example of multiplication and
addition of two matrices is shown in figure 2.8.

2.5.2.2 Torch Autograd Module

Autograd module is responsible for automatic differentiation on tensors. Since
it reduces the line of code to perform differentiation operation, many complex
neural network architectures can be developed very easily. Declaration of tensors
is needed for which the gradients to be computed. Currently, the Autograd module
only has support for floating points tensor types [50]11. An example of gradient

11https://pytorch.org/docs/stable/autograd.html
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Figure 2.8: An Example of Basic Operation on tensor in PyTorch

calculation is provided in figure 2.9. By calling backward(), function the automatic
differentiation can be performed.

Figure 2.9: An Example of Gradient Calculation in PyTorch

2.5.2.3 Torch Optim Module

The optim Module of PyTorch is responsible for optimization tasks. In general,
this package comes with a bunch of optimization algorithms (i.e, Adam [40], Ada-
grad [37], Adadelta [51]). An Optimizer instance is required to be initialized. To
initialize the optimizer object, we need to pass an iterable of dictionaries, which
denotes different sets of parameter groups [52]12. These parameter groups include
model parameters, class parameters, etc. Some other parameters, including learn-
ing rate, weight decay, etc. Before performing a single optimization step, the

12https://pytorch.org/docs/stable/optim.html
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zero_grad() function needs to be called to set the gradients to zero. One sin-
gle step of optimization is done after calling the step() function on the initialized
optimizer instance. The initialization of an optimizer, zeroing the gradients, and
performing a single step of the optimization process is illustrated in figure 2.10.

Figure 2.10: An illustration of using optimizer object from Pytorch

2.5.2.4 Torch nn.Module

Torch nn.Module is responsible for implementing neural network structures in
PyTorch framework. It provides a speedy and robust implementation of neural
network architectures. All neural network classes that are to be implemented
should be inherited from this base class nn.Module [53]13. Since this thesis heav-
ily relies on PyTorch libraries to implement the embedding models, nn.Module

is one of the few important aspects. An example of nn.Module utilization is
illustrated in image 2.11. in this example, a two-layer neural network has been
initialized and its respective forward function has been defined.

Figure 2.11: Example of utilization of nn.Module in pytorch

13https://pytorch.org/docs/stable/generated/torch.nn.Module.html



Chapter 3

The RULECT System

In this chapter, the whole system’s overview is described deliberately; namely, the
core modules of RULECT are described across several sections which are: 3.1,
3.2 and 3.3. In section 3.2, while discussing about the Rule Extraction module,
the whole grounding generation process (starting from the output patterns from
AMIE+ to groundings per rule type) is demonstrated. Later, the ideology behind
the generation of grounding losses for each rule (implication, inverse, symmetric,
and equivalence) and how the groundings are injected while training the KGE
models have been described and illustrated through both figures and algorithms
in 3.3. A brief introduction about leakages, their removal process, and test sets per
pattern generation have been discussed in sections 3.4 and 3.5. Lastly, two extra
modules as new additions have been depicted at the end of this chapter in sections
3.6 and 3.7. The summary of the whole rule injection process and the notion about
leakage in the test set and their removal process have been demonstrated in [6]1

(a portion of this thesis), in this chapter the process has been described in a more
elaborate manner through both diagrams and algorithms.

RULECT uses three different modules altogether:

• Rule extraction module is responsible for the extraction of rules from
KGs. Since groundings are required for obtaining grounding losses for each
mentioned rule type, this module is equally responsible for generating ground-
ings from the patterns (rules) that are initially extracted from AMIE+.

1The Author of this thesis is the first author of this paper. This paper is accepted, presented
and in the proceedings of Workshop of Knowledge Representation and Representation Learning
co-organized at ECAI Conference, 2020.

20
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Figure 3.1: RULECT: A Rule Injection System for KGE models

• Data preprocessing module is responsible for generating the mappings
based on the numerical dictionaries of entities and relations which is required
in the Training & Evaluation module.

• Training and evaluation module is responsible for training the KGE
models and injecting groundings for each rule type in parallel. One of the
major tasks of this module is to save the trained model and evaluate the
model based on five evaluation metrics, namely, mean rank, mean reciprocal
rank, hit@1, hit@3, hit@5, and hit@10 (these metrics will be briefly discussed
in chapter 6).

Figure 3.1, provides an illustration of the whole RULECT system. In following
sections, these components are discussed elaborately.
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Figure 3.2: Mapping Generation

3.1 Data Preprocessing Module

The Data preprocessing module is responsible for the generation of mappings. The
Training & evaluation module requires numeric values, but most of the KG are
consisting of string type RDF triples. Thus, dictionaries are created for individual
entities and relations existing in the Knowledge Graphs. The dictionaries contain
numeric identifiers of each entity and relation. Eventually, the KGE triples are
replaced with these numeric identifiers, which are required in the Training &

Evaluation module.

3.1.1 Generation of Mappings

Since the Training & Evaluation module requires numeric identifiers for the in-
dividual entities and relations, that is why mappings are generated in such a way
that individual strings of entities and relations existing in that KG are contained
in a dictionary labeled by unique identifiers. Later, string triples (both entities and
relations) of the particular KG are replaced with these identifiers of the dictionar-
ies. These dictionaries are named as entities.dict and relations.dict and further
saved in local storage. For some of the datasets obtained from several sources,
the identifiers (dictionaries) were already given. That is why the generation of
those files was explicitly not required for those KGs where the dictionaries of the
identifiers were already present. Only replacing those string triples with the given
identifiers was a requirement for training and evaluation phase. An illustration of
mapping creation is provided in figure 3.2.
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3.1.2 Splitting the Train, Test and Validation data

If the KG does not come up with separated train, test and validation data,
RULECT can do the splitting. Otherwise, this subsection is not required. Small
portions from the KGs are randomly taken out for testing and validation purpose.
The obtained training data is used to train the KGE models. KGE models are
trained on the training data. We need validation data for evaluating the model
in training phase at defined intervals since early stopping is planned to be im-
plemented in the system(which is not fully implemented at the moment). Early
stopping is a criterion to stop the training process when the performance on the
evaluation set starts decreasing.

3.2 Rule Extraction Module

The Rule Extraction module is responsible for the whole grounding generation
process. This module prepares the rules which are extracted in such a way that
they can be injected into the KGE models while training. This module use the
output of AMIE+ [15] to generate groundings.

Each of the presented rule types in this research has a premise and a conclusion,
which comes as an AMIE+ output (mined rules) (i.e., ?a isOwnerOf ?b => ?b

isOwnedBy ?a). These output patterns are not compatible for injection since
we need particular head h, tail t, the premise relation r1, and conclusion rela-
tion r2 to inject. To satisfy such requirement by incorporating the components,
groundings are generated by matching the patterns from the AMIE+’s output
with the training triple’s premise. The illustration for the process of generating
the patterns from AMIE+ to the groundings per rule types are provided in figure
3.3. If we consider a practical example, the grounding for {?a isOwnerOf ?b

=> ?b isOwnedBy ?a} is transformed into {BillGates isOwnerOf Microsoft

=> Microsoft isOwnedBy BillGates} when the extracted patterns matches the
training data, where both of these triples {BillGates isOwnerOf Microsoft}
and {Microsoft isOwnedBy BillGates} are existing in training set.
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Figure 3.3: Illustration of the output patterns from AMIE and groundings

3.2.1 KG Triples

A format of a particular triple is (h, r, t), where h, r and t stand for head, relation
and tail respectively. h and t are called entities or nodes. A relation r is connec-
tions between the nodes. Another variant for naming the {head, tail, relation} is
{subject, predicate , object}.

3.2.2 Extract Rules using AMIE+

Primarily, as already stated, AMIE+ [15] has been used to mine the rules from a
particular KG. AMIE+ is a rule extraction framework developed by the YAGO-
NAGA team2 and DIG team3. AMIE+ software can be obtained from the website4

of AMIE [42]. The latest version of AMIE can be found at the Github page 5.
The AMIE+ software is licensed under the Creative Commons Attribution-

NonComercial license v3.0 6. AMIE+ uses Javatools which has been released
under the terms of Creative Commons Attribution license v3.0 7. In this

2https://www.mpi-inf.mpg.de/departments/databases-and-information-
systems/research/yago-naga/amie/

3https://dig.telecom-paris.fr/blog/
4https://www.mpi-inf.mpg.de/departments/databases-and-information-

systems/research/yago-naga/amie
5https://github.com/lajus/amie
6https://creativecommons.org/licenses/by-nc/3.0/
7https://creativecommons.org/licenses/by/3.0/
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research the output of AMIE+ has been used to achieve the mined rules from a
KG. No modification to the AMIE+ software has been done.

AMIE+ requires the training file of a particular KG in TSV (tab separated value8)
format. In the output, it provides the extracted rules along with their statistical
measurements (i.e., Standard Confidence, PCA confidence, Head Coverage etc).
In chapter 4, rule generation is discussed more elaborately.

3.2.3 Filter Prominent Rules Using Threshold

Setting a threshold in the Std Confidence (i.e., 80%) for a particular rule, causes
certain non-significant rules to be filtered out. This method been discussed briefly
in chapter 4.

3.2.4 Grounding Generation

A part of this thesis [6]9 demonstrates the summary of grounding generation pro-
cess, which is a vital step to this research. In this subsection this whole process is
elaborated through both images and algorithms. As an example for a particular
AMIE+ extracted rule {?a isOwnerOf ?b}=>{?b isOwnedBy ?a}, the grounding
is produced as: {BillGates isOwnerOf Mircosoft} => {Microsoft isOwnedBy

BillGates}. The mentioned example provides a demonstration of inverse pattern
which is producing inverse grounding. According to figure 3.3, the grounding for-
mat from this example is: [BillGates, Microsoft, isOwnerOf , isOwnedBy] and
it is saved in inverse grounding file. Additionally, groundings for other rule types
are also generated and saved in local storage in separate files. These grounding
files are further used in the rule injection process.

To generate the groundings from extracted rules which are significantly impor-
tant in the learning phase, specific steps needs to be taken. Algorithm 3, demon-
strates the grounding generation process step by step. Figure 3.4 [6] also illustrates
grounding generation process where we show a scenario of grounding generation
from extracted rule pattern. In algorithm 3, initially, for each of the mentioned rule
types, the premise components {h1, r1, t1} and conclusion components {h2, r2, t2}

8https://en.wikipedia.org/wiki/Tab-separated_values
9please see footnote 1
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Figure 3.4: Preparation of the rule injection data [6]

are decomposed by SplitRule() function. Then a checking has been done to clas-
sify these components (i.e., h1 = h2 and t1 = t2 and r1 6= r2 is a condition for
classifying implication rule). The relations from the respective rule’s premise (r1)
and conclusion (r2) are then taken with the corresponding rule type (label) into
rule-bag T .

The entries from the rule-bag T is iterated, and the entry’s premise (r1) is matched
with the training triple’s relation (r). In cases where they match, the conclusion
triples are formed by utilizing the rule-bag({h, r2, t} for implication, equivalence
and {t, r2, h} for inverse, symmetric). If the conclusions which are formed does not
exist in the training set, then, [h, t, r1, r2] is taken in the corresponding grounding
class (implication grounding, inverse grounding, symmetric grounding and equiv-
alence grounding), where h, t, r1 and r2 stands for head, tail, premise relation and
conclusion relation. Further these are written in the storage as separate files.

3.2.5 Development of Grounding Loss per Rule Ideology

The groundings obtained from Rule Extraction module is injected in order to
train a particular KGE model with rule injection. Since the groundings are pro-
vided in the training phase, the development of loss function which is able to
calculate losses for the groundings per relation type is essential. The core ideology
for the development of such grounding loss per rule type has been taken from
LogicENN [14] paper. The calculation of grounding loss is based on a constrain
where, the score of the premise can be at most equal to the score of conclusion.
The formal representation of rules can be seen in table 3.1, which demonstrates
grounding loss formulation per rule type by providing scores for each rule’s premise
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Algorithm 3: Grounding generation
INPUT: Rules - Rules extracted from AMIE
OUTPUT: Gimplication, Ginverse, Gsymmetric,Gequivalence

Function GroundingGeneration(Rules):
classtype = {implication, inverse, symmetric, equivalence}
T = {}
for all rule ∈Rules do

h1, r1, t1, h2, r2, t2 = SplitRule(rule)
if h1 == h2 AND t1 == t2 AND r1 6= r2 then

T = T ∪ [premise : r1, conclusion : r2, type : implication]
else if h1 == t2 AND t1 == h2 AND r1 6= r2 then

T = T ∪ [premise : r1, conclusion : r2, type : inverse]
else if h1 == t2 AND t1 == h2 AND r1 == r2 then

T = T ∪ [premise : r1, conclusion : r2, type : symmetric]

for all entry i ∈ T do
if i.type == implication then

for all OtherEntry j ∈ T do
if j.type == implication AND i.r1 == j.r2 AND i.r2 == j.r1

then
i.type = equivalence
T = T − {j}

for all triple t ∈ τ do
for all entry e ∈ T do

if e.premise == t.relation AND e.type == implication then
if {t.subject, e.conclusion, t.object} /∈ τ then

Gimplication =
Gimplication ∪ [t.subject, t.object, e.premise, e.conclusion]

if e.premise ==t.relation AND e.type == inverse then
if {t.object, e.conclusion, t.subject} /∈ τ then

Ginverse =
Ginverse ∪ [t.subject, t.object, e.premise, e.conclusion]

if e.premise == t.relation AND e.type==symmetric then
if {t.object, e.conclusion, t.subject} /∈ τ then

Gsymmetric =
Gsymmetric ∪ [t.subject, t.object, e.premise, e.conclusion]

if e.premise == t.relation AND e.type == equivalence then
if {t.subject, e.conclusion, t.object} /∈ τ then

Gequivalence =
Gequivalence ∪ [t.subject, t.object, e.premise, e.conclusion]

return Gimplication, Ginverse, Gsymmetric,Gequivalence
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and conclusion for the mentioned KGE models (column Formulation based on

score function) except LogicENN. The last two columns (Formulation based

on NN and Equivalent regularization form) of table 3.1 demonstrates the for-
mulation of represented rules for LogicENN. This table has been taken from [14]
and acting as the core ideology for developing the grounding losses per rule type.

Table 3.1: Formulation and representation of rules [14]

Rule Definition
∀h, t, s ∈ E : . . .

Formulation
based on score
function

Formulation based on
NN

Equivalent regularization
form

Equivalence(h, r1, t) ⇔
(h, r2, t)

f r1h,t = f r2h,t + ξh,t ΦT
h,t(

~βr1 − ~βr2) = ξh,t max(
∥∥∥~βr1 − ~βr2

∥∥∥
1
− ξEq, 0)

Implication (h, r1, t) ⇒
(h, r2, t)

f r1h,t ≤ f r2h,t ΦT
h,t(

~βr1 − ~βr2) ≤ 0 max(
∑

i(
~βr1i − ~β

r2
i ) + ξIm, 0)

Inverse (h, r1, t) ⇒
(t, r2, h)

f r1h,t ≤ f r2t,h ΦT
h,t
~βr1 − ΦT

t,h
~βr2 ≤ 0 max(ΦT

h,t
~βr1 − ΦT

t,h
~βr2 +

ξIn, 0)

Symmetric (h, r, t)⇔ (t, r, h) f rh,t = f rt,h + ξh,t (Φh,t − Φt,h)
T ~βr = ξh,t max(|(Φh,t − Φt,h)

T ~βr| −
ξSy, 0)

There are two parts of the formulation: neural network-based formulation and a
general formulation based on score function. Some of the specialized parameters
in the tables are notified in section 6.1.2 in chapter 6 (mentioned parameters are
also described in the paper [14] by the authors of LogicENN). In neural network-
based formulation (applicable for the last two columns of the table 3.1), authors
presented a new neural-based embedding model named LogicENN [14], where the
model can learn the underlying groundings of a KG. The second formulation is
more general, where the formulation is mostly based on the score function of KGE
models. Here, a particular constrain has been defined for each of these mentioned
rule type in a way that, the score of the premise (f r1h,t) can not be bigger than the
score of the conclusion (f r2h,t). For each of the rule types, there are different rule
loss constants ξ. We can have a closer look at the definition of each rule type in
table 3.2. In table 3.2, the formal definition of these four rules are given, where h
represents head, t represents tail, r1 represents relation of the premise (left hand
side of the definition) and r2 represents the relation of the conclusion(right hand
side of the definition).

In this research, four of the logical rules discussed in 3.2 are only considered for
learning: implication, inverse, symmetric, and equivalence. All the other logical
rules remain outside this thesis’s scope and can be considered as a future direction.
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Table 3.2: Representation of Rules

Rule Definition
Implication (h, r1, t)⇒ (h, r2, t)
Symmetric (h, r, t)⇐⇒ (t, r, h)
Inverse (h, r1, t)⇒ (t, r2, h)
Equivalence (h, r1, t)⇐⇒ (h, r2, t)

3.3 Training & Evaluation Module

In this module, the stored groundings for each of the rule type are ready to be
injected while KGE models are in the training phase. The aim of the rule injected
KGE models is to train on the data with an additional term called grounding
loss. The development of grounding loss is based on the ideology provided in
3.2.4, has been illustrated further in algorithm 4. Several KGE models are inte-
grated in RULECT for rule injection, and they are: DistMult [13], ComplEx [5],
TransComplEx [1], RotatE [4]), TransE [2] and LogicENN [14]. The training phase
of these KGE models is modified in a way that the models are trained with an ad-
ditional term namely, the grounding loss. Afterward, during the evaluation phase,
this trained KGE model is evaluated with standard evaluation metrics (discussed
in chapter 6). One thing is to notify that, for the training of LogicENN (with
the injection of rules) only, the grounding loss functions developed particularly for
LogicENN as in [14] have been used. The other mentioned KGE models use a
general loss function to calculate grounding loss (described in algorithm 4).

3.3.1 Selected Embedding Models

In order to train and evaluate the effect of rule injection, a handful of popular KGE
models are chosen. These selected KGE models for rule injection in RULECT

are described as follows:

LogicENN A neural-based Embedding model [14] named LogicENN, which has
been developed to capture underlying logical rules existing in a particular KG. This
model acts as a baseline and motivator for this research. Authors of LogicENN [14]
describes their score function is stated in 3.1 [14].
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f rh,t =
L∑
i=1

φ(〈~wi, [~h,~t] + bi〉)βri =
L∑
i=1

φh,t(~wi, bi)β
r
i

= ΦT
h,t
~βr

(3.1)

In equation 3.1, h,t, and r is denoting the head, tail, and relation of the triple.
vector ~w and b denotes the weights and bias of the neural network. L denotes the
number of nodes of a particular layer. φ denotes the score function of the KGE
model. f rh,t is the score of LogicENN model. The following optimization is done
by the authors which can be seen from equation 3.2 [14].

min
θ

∑
(h,r,t)∈S

αrh,tlog(1 + exp(−Yrh,tf rh,t)) + λ
∑
i=1

Ri

Ni (3.2)

N denotes the total number of groundings, R represents the rules, and λ is a
constant value for rule loss. The label of the triples is represented by Y r

h,t. f rh,t

denotes the score for the triples as described in 3.1.

TransE TransE [2] translates the head h towards tail t via the relation r. TransE
has a distance function namely, d which calculates the distance between them .

The loss function for TransE has been stated in equation 3.3 [2], where the margin
is γ, and h′ and t′ represents the randomly perturbed head or tail for a particular
h and t of a triple.

L =
∑

(h,r,t)∈S

∑
(h′,r,t′)∈S(h,r,t)

[γ + d(h+ r, t)− d(h′ + r, t′)]+ (3.3)

DistMult The Distmult score function is calculated by the multiplication of its
head h and tail t with their corresponding relational matrix Mr [13]. Here, Mr is
a diagonal matrix. The following equation [13], represents the score function of
Distmult.

f r = hTMrt (3.4)
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Similar to TransE, for loss minimization margin ranking loss is used by the authors
of Distmult in [13]. The head and tail are corrupted in random fashion to generate
negative triple.

ComplEx ComplEx has real Re and imaginary Im parts for entity and relation
embeddings. The score function of ComplEx φ(h, r, t; θ) is written in the equation
3.5 [5].

φ(h, r, t; θ) =< Re(wr), Re(eh), Re(et) >

+ < Re(wr), Im(eh), Im(et) >

+ < Im(wr), Re(eh), Im(et) >

− < Im(wr), Im(eh), Re(et) >

(3.5)

here, h, r and t denotes the head, relation and tail. θ is the model parameter. The
entity embedding space is consists of both h and t and denoted as eh and et. The
relation embedding space is denoted by wr.

Authors used log likelihood on the model parameter θ. L2 regularization has been
used in this case which is shown in equation 3.6 [5].

min
θ

∑
r(h,t)∈Ω

log(1 + exp(Yrhtφ(h, r, t; θ))) + λ ‖θ‖2
2 (3.6)

TransComplEx The score function of TransComplEx is obtained by the trans-
lation of the head h toward the conjugate of tail t̄ via relation r [1]. The score
function of TransComplEx is shown in equation 3.7 [1].

fr = ‖h+ r − t̄‖ (3.7)

Similar to ComplEx, entity (h and t) and relation (r) vectors are using complex
embedding space, which means they have both real and imaginary parts. Margin
ranking loss has been used by the authors of [1] to minimize the overall loss
similarly as TransE and Distmult.
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RotatE RotatE rotates the head h towards tail t via phase relation r. For such
operation complex embedding space has been chosen. In equation 3.8 [4], the score
is demonstrated, where h is head, t is tail and r is relation.

dr = ‖h ◦ r − t‖ (3.8)

The loss is demonstrated in the equation 3.9 [4].

L = −logσ(γ − dr(h, t))−
n∑
i=1

1

k
logσ(dr(h

′
i, t

′
i)− γ) (3.9)

In this equation 3.9 [4], margin is denoted as γ and the score is dr(h, t). This score
is a distance base between h and t for a particular relation r.

3.3.2 Injection of Groundings

Injection of groundings per rule type are done from the stored grounding files the
training phase of selected KGE models. For training of the RotatE, TransComplEx
and TransE, loss function described in [4] has been used. For Distmult, ComplEx,
and LogicENN, the self-adversarial logistic loss (a combination of binary logistic
loss function [5] and self adversarial sampling [4]) has been used.

The table 3.1, shows the ideology behind developing the grounding losses for each
mentioned rule types. In this table, the score function of a particular embedding
model’s premise and conclusion is stated as (f r1h,t) and (f r2h,t) accordingly, where
h,t,r1 and r2 denotes head, tail, premise’s relation and conclusion’s relation re-
spectively.

Depending on the design of score function, either score of premise f r1h,t or score of
conclusion f r2h,t can be bigger. It is possible because some models provide higher
scores for positive triples, on the other hand, some provide higher scores for neg-
ative ones. In the cases of Distmult, ComplEx and LogicENN, score of premise
f r1h,t is always bigger or equal than score of conclusion f r2h,t. On the other hand, for
TransComplEx, RotatE and TransE, score of conclusion f r2h,t is always bigger or
equal than score of premise f r1h,t. This constrain is the basis of the development
for the grounding loss per rule type. Obtaining the grounding losses per rule is
provided in algorithm 4.
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Algorithm 4: Grounding Loss Generation
INPUT: model - RotatE, TransE, Distmult, TransComplEx, ComplEx,
groundings - the ground truths,
mode - it contains the type of the groundings (i.e, implication, inverse,
symmetric, equivalence),
ξ - the grounding constant, slack variable
OUTPUT: loss - The loss of the groundings

Function grounding_loss(model, groundings, mode, ξ):
Extract parts of groundings
h, t, r1, r2 = groundings[h], groundings[t], groundings[r1], groundings[r2]
Check the mode of groundings
if mode = inverse OR mode = symmetric then

outputpremise = f(h, r1, t)model

outputconclusion = f(t, r2, h)model
else if mode = implication OR mode = equivalence then

outputpremise = f(h, r1, t)model

outputconclusion = f(h, r2, t)model
else

return other modes are not available
Check model name
if (namemodel = Distmult OR namemodel = ComplEx) then

if mode = symmtric then
return relu(|(outputpremise − outputconclusion)|+ ξ)

else
return relu(outputpremise − outputconclusion + ξ)

else
if mode = symmtric then

return relu(|(outputconclusion − outputpremise)|+ ξ)
else

return relu(outputconclusion − outputpremise + ξ)

In algorithm 4, the input is the embedding model which is to be trained, since the
score function f of the embedding model is used to generate the score of premise
(outputpremise) and conclusion (outputconclusion). Other inputs are groundings,mode
(mode indicates which type of grounding is obtained as input to the algorithm),
and ξ. ξ is a constant value (it may vary per grounding-type). The function’s
output is a particular grounding loss defined by the constraints described in table
3.1.

In algorithm 5, the inclusion of grounding loss in the training phase is demon-
strated. Here, it uses the grounding_loss() function defined in algorithm 4. In
this algorithm, first, all the required hyperparameters have been initialized, includ-
ing rule loss constant λ and all the individual constants ξ which are used for each
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of the grounding type. A KGE model is needed to be initialized by defining its
score function f beforehand. This score function f(h, r, t) is required for scoring
the triples (both true and corrupted ones).

Algorithm 5: Injection of ground truths while training embedding models
Map each entity e and relation r to a unique vector. First it is assigned in a
random fashion.
Initialize a suitable learning rate α
Initialize a rule loss constant λ
Initialize an implication loss constant ξim

Initialize an inverse loss constant ξinv

Initialize an symmetric loss constant ξsym

Initialize an equivalence loss constant ξeq

Initialize other hyperparameters such as batch size β, embedding dimension d
Define a score function f(h, r, t) to score the plausibility of each triple in
knowledge graph.
do

Generate batch of positive triple P = (h, r, t).
Generate batch of C negative triple N = (h′, r, t′) per positive.
Generate batch of Implication groundings Gimp.
Generate batch of Inverse groundings Ginv.
Generate batch of Symmetric groundings Gsym.
Generate batch of Equivalence groundings Geq.

Score positive triples Pscore = f(h, r, t)
Score negative triples Nscore = f(h′, r, t′)
Calculate base loss L = loss(Pscore,Nscore)

Calculate implication rule loss Lim = grounding_loss(f ,Gim, ξim)
Calculate inverse rule loss Lin = grounding_loss(f ,Ginv, ξinv)
Calculate symmetric rule loss Lsym = grounding_loss(f ,Gsym, ξsym)
Calculate equivalence rule loss Leq = grounding_loss(f ,Geq, ξeq)

Calculate average grounding loss Lg = Average(Lim,Linv,Linv,Leq)
Calculate total loss TL = L + λ ∗ Lg

Update the embedding vector by performing backpropagation on Total
Loss TL with learning rate α

while Minimum loss is achieved

In algorithm 5, it can be seen that, in each epoch, both the training set and
the groundings are to be fetched in mini-batches. For each true triple (h, r, t),
corrupted triple (h′, r, t′) has been be generated by either corrupting head h or
tail t. For each positive (true) triple, one or multiple negative (corrupted) triple is
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generated. Here the number of the negative triple is denoted by C. By forwarding
the positive batch of triples P and the negative batch of triples N to the score
function f of the embedding model, positive score Pscore and negative score
Nscore are calculated. Based on the Pscore and Nscore, base loss L is generated.
Next, the losses for each individual groundings (implication (Lim), inverse (Linv),
symmetric (Lsym) and equivalence(Leq)) are calculated by passing those groundings
as parameters to the function grounding_loss(), which has been described in
algorithm 4. All of these grounding losses are then averaged and named as average
grounding loss, Lg. Lg is further added with the base loss L, multiplied with a
rule loss constant λ. Finally, this epoch ends by updating the parameters on the
basis of total loss. The whole process repeats until a minimum loss is achieved.
The process was originally created for rule injection of LogicENN model [14] but
now this is adapted to inject rule in other KGE models as well.

3.4 Leakage Detection and Removal

To investigate the second research question, detection and leakage removal from
the KG test sets are required. As mentioned previously, in this research, leakages
are the conclusions in the test set whenever the respective premise resides among
the training set. An illustration of leakage can be seen in figure 3.5.

To evaluate our trained models on these leakage-free test sets, removing leakage
from the test set is necessary. Other researchers removed leakages from the training

Figure 3.5: Illustration of leakages in the test set
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Figure 3.6: Illustration of leakage removal from test set

set (i.e., FB15k-237 removed the leakages from the training set by removing those
relations for which leakages exist). Since this particular thesis requires the training
file to be rich in patterns, leakages from the test sets have been removed. The
leakage removal process from test sets requires those grounding files since those
contain both premise and conclusions for a particular training data, and it is in the
form of [h, t, r1, r2], where r1 and r2 is premise’s relation and conclusion’s relation
respectively. To remove the leakages, the following steps need to be taken:

• Fetch the conclusions from respective grounding files.

• All the fetched conclusions needs to be unified.

• Remove the unified conclusions from the KG test files.

The removal of leakages is illustrated in figure 3.6.

3.5 Generation of Test Set per Pattern

To evaluate the third research question, test sets per pattern has been generated.
For this reason, a separate functionality is added to generate these versions of test
file. This requires the KG’s training file and the corresponding test file. The main
idea is to search for specific relations for which four patterns (implication, inverse,
symmetric, and reflexive) exist in the training file. The reflexive patterns are the
triples where the head h and tail t are same for a particular relation r. The other
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patterns are already discussed in previous sections. Based on the pattern frequency
per relation, only top relations are considered. Finally, only the triples containing
those relations are kept in the test set. The details of the implementation of such
versions of the test set are provided in chapter 4.

3.6 Extra Module: Extended version of LogicENN

An extended version of LogicENN from [20]10 has been integrated into the pipeline
of RULECT. The extension for LogicENN [20] has several parts: removal of
groundings, making the first layer fixed not to learn anything and using a double
LogicENN model. All of these extensions are described in the following.

3.6.1 Conversion of grounding

According to [20], We train the models with integration of reverse triples (for
(h, r, t) we include (t, r-1, h) in the training data by adding a new relation) with the
training set. This inverse and symmetric groundings can be avoided by including
an additional relation r-1 which corresponds to the particular relation r.

Inverse grounding removal [20] demonstrates that, for each inverse rule (h, r1, t) =⇒
(t, r2, h), if we consider a reverse triple (h, r2

-1, t) corresponding to the conclusion
(t, r2, h), we get (h, r1, t) =⇒ (h, r2

-1, t). Thus, inverse grounding is removed by
converting it to implication.

Symmetric grounding removal [20] states the procedure of symmetric ground-
ing removal. For each symmetric rule (h, r, t) =⇒ (t, r, h), we can consider a new
triple with a new relation corresponding to the conclusion of symmetric rule. Thus,
(t, r, h) can be a correspondence of (h, r-1, t). Hence, the symmetric grounding can
be converted to equivalence by (h, r, t)⇔ (h, r-1, t).

10Author of this thesis is a co-author of this paper which is currently submitted to Transactions
on Pattern Analysis and Machine Intelligence journal.
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3.6.2 Fixing first layer

According to [20], to make the model not too much burdened with model param-
eters θ, the functionality has been added for fixing the first layer of the neural
network of LogicENN. This approach might even cause the model to learn faster
than a regular LogicENN.

3.6.3 Training with dual LogicENN model

According to [20], in order to make the learning robust, two LogicENN has been
combined. First LogicENN learns by injection of original grounding [h, t, r1, r2].
Another LogicENN model learns by injecting reverse grounding [t, h, r1

-1, r2
-1]

which corresponds to the original grounding. The combined output of both Logi-
cENN provides ultimate output.

3.7 Extra Module: Visualization of Trained Em-

bedding

The visualization system for the trained embedding described in [21]11 has also
integrated into the pipeline. The initial entity types and the idea for such visu-
alization process for trained embedding have taken from [54]. The same authors
also developed one of the other models, which learns contextual embeddings [55].
The data for each entity type has been obtained from the author’s Github repos-
itory12. For the visualization, two function has been illustrated which are demon-
trated in algorithm 6 and 7. Algorithm 6 demonstrates the grouping of entities
per type in a listwise manner. The input for the algorithm 6 is in the form of
[entity, type] and the function provides an output (data_out) of grouped entities
per type as [type, frequency, list(entities)]. The output of the algorithm 6 is pro-
vided as the input of algorithm 7 for visualization in two-dimensional projection
using T-SNE [56]. Algorithm 7, takes additional inputs as the indicated types (the
selected entities of this type are considered in two-dimensional projection) and the
trained embedding vectors in a matrix form where each row corresponds to an

11Author of this thesis is a co-author of this paper. This paper is published at IEEE Access.
12https://github.com/cmoon2/knowledge_graph
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entity. This algorithm’s output is a visualization window, where d dimensional
embedding vectors are projected in two dimensions for each indicated type using
separated color code. Some visualizations of trained embedding are illustrated at
the end of chapter 6.

Algorithm 6: Type creation for visualization
INPUT: data_in - In the format [entity_name, type]
OUTPUT: data_out - In the format
[type, frequency, list(matched_entity_name)]

Function GroupEntityTypes(data_in):
Get unique types from the data_in as unique_types = data_in[′type′]
Initialize an empty list data_out
for type ∈ types do

Group all the entities which matches type
Count how many entities matches with current type
Form array temp = [type, frequency, list(matched_entity_name)]
Append temp with data_out

return data_out

Algorithm 7: Visualizing trained entity embedding
INPUT: data_out - In the format
[type, frequency, list(matched_entity_name)],
indicated_types - To visualize embedding of those types,
trained_embedding - matrix of trained embedding vector where each row
corresponds to each entity
OUTPUT: visualization_window - Embedding visualization for each given
category

Function GenerateVisualization(data_out):
Initialize an empty list temp
for type ∈ indicated_types do

Fetch the indexes of entities of current type
Form vectors containing [indexes, type]
Stack all the vectors with temp

Retrive those embedding vectors for the indexes residing in temp
Provide each type as separate color code
Project those embedding vectors of n dimension to 2 dimension using
TSNE using hue parameters as respective types

return visualization_window



Chapter 4

Preparation and Extraction

This chapter provides a practical level idea about the implementations of the rule
extraction module, detection and generation of leakage and generation of test set
per pattern discussed in chapter 3. To grasp an idea about how the structure of
the whole directory of RULECT looks like, we may observe the figure 4.1.

Figure 4.1: Folder Structure of the RULECT repository

40
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4.1 Pattern Extraction from AMIE+

For obtaining the groundings AMIE+ [15] has been used as discussed in the
chapter 3. AMIE+ requires triples as input which consists of (h, r, t). A training
file of knowledge graph which contains training triples in (h, r, t) format has been
provided as an input to AMIE. To have a glimpse of how an example of training
triple looks like can be visualized in the figure 4.2.

Figure 4.2: Part of Freebase15k training triple as an input to AMIE

According to the instruction from the AMIE+’s website 1, the following command
has to be issued in the command line as provided in figure 4.3.

Figure 4.3: AMIE instruction

1https://www.mpi-inf.mpg.de/departments/databases-and-information-
systems/research/yago-naga/amie
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The output of AMIE is a file which contains columns such as Rule, Head Coverage,
Std Confidence, PCA Confidence, Positive Examples, Body size, PCA Body size,
Functional variable, Std. Lower Bound, PCA Lower Bound, PCA Conf estimation.

4.2 Filtering Out Significant Rules

For filtering out the less significant rule, the Std Confidence level column has been
considered. To achieve this, threshold_based_rule_extractor.py script from the
DataGenerator folder has been utilized. This script contains a function where it
takes the output of AMIE+ as an input and filters out less significant rules given
a threshold (i.e., 0.80 or 80%). The function has been provided in figure 4.4. The
function takes the input path, extracts rules with a given confidence range, and
saves the rule file with only columns containing Rule and Std Confidence.

Figure 4.4: Threshold based rule extraction script

These thresholded rules are used for further generation of the groundings. Rules
of four patterns defined in equations 4.1, 4.2, 4.3, 4.4 are only considered further
for implication, inverse, symmetric and equivalence grounding generation.

?a r1 ?b => ?a r2 ?b (4.1)

?a r1 ?b => ?b r2 ?a (4.2)

?a r ?b => ?b r ?a (4.3)
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?a r1 ?b <=> ?a r2 ?b (4.4)

4.3 Grounding Generation

grounding_creation.py script from DataGenerator folder is responsible for gen-
erating the groundings from the thresholded rule file. Based on the algorithm
provided in algorithm 3 of chapter 3, required groundings (implication, inverse,
symmetric, and equivalence groundings) are generated. Three inputs are required
for the grounding generation script: the thresholded rule file, training triples (from
which the groundings are be generated), and the relation dictionary relations.dict.
(which contains a unique numerical identifier for each relation).

The grounding generation algorithm (algorithm 3) has two parts which is separated
as two different functions in the script: create_rule_bag(), and ground_truth_generation().
The create_rule_bag() function is responsible for the classifying and labeling
the rules by looking at the conditional patterns. From the thresholded rule
file, a rule-bag is generated where each of the row for the rule bag looks like
[premise r1, conclusion r2, rule type]. The create_rulebag() function is illustrated
in figure 4.5.

If we look into the details, this function takes the rule patterns (equations 4.1, 4.2,
4.3, 4.4) as input and splits them into their individual parts namely (h1, t1, r1, h2, t2, r2).
Eventually, the patterns are checked and the corresponding relations (r1, r2) (rela-
tion premise and relation conclusion) are labeled with the matched rule type. For
labeling those rules (r1, r2) in the input patterns, numerical values of 0 to 4 (0-
implication, 1-inverse, 2-symmetric, 3-equivalence) has been considered. Finally,
the function returns the rule-bag as in the format [r1, r2, label].

After obtaining the rule-bag (the output of create_rulebag() function), the func-
tion ground_truth_generation() has been called in order to generate the ground-
ings. The calling of ground_truth_generation() function has been illustrated in
figure 4.6.

The ground_truth_generation() function takes the rule-bag as input and the
training triple; it eventually returns groundings of the four mentioned rules (impli-
cation, inverse, symmetric, and equivalence). After obtaining the required inputs,
each of the training triples is traversed and checked whether the relation of the
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Figure 4.5: Function for creating rule-bag

training triple matches with every premise (r1) of the rule-bag. If it matches, then
it further checks the label of the corresponding rule-bag and a condition. The con-
dition is, whether {triplehead, tripletail, r2(conclusion′s relation)} already exists in
the training triple or not (for implication and equivalence). For symmetric and in-
verse, the condition has been checked as {tripletail, triplehead, r2(conclusion′s relation)}
exists or not among the training triple. Finally, if they do not reside in the training
triple, then these are formed into a specific format, which is: [triplehead, tripletail,
r1(premise), r2(conclusion)].
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Figure 4.6: The function grounding_generation()

4.4 Removal of Leakage From Knowledge Graph

Test Set

One of the core tasks of the RULECT system is to check whether rule injection
helps if leakages are removed from the test set since creation of leakage-free version
of test set is necessary for the second research question. To identify potential
leakages in the test set, certain strategies are taken.

• Firstly, the conclusions are fetched from the respective grounding files as
conclusion triples.

• The fetched conclusions are matched with each triple of the test data. If the
conclusion matches then, it is considered as a potential leakage in the test
set.
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• For each of the grounding types, the matched conclusions with the test data
are combined or unified.

• Finally, those unified conclusions are removed from the test data in order to
obtain a refined test set.

For example, if any conclusion (t, r, h) in the test set exists for a particular premise
(h, r, t) in the training set, it can be considered a symmetric leakage. These leak-
ages are removed from the test set, which makes the link prediction task more
challenging. This research has a vital part and it is to explore whether rule in-
jection helps or not if we consider leakage-free test sets. Previously in other re-
searches, from the training set leakages are removed. In this case, a discovery of
the embedding model’s inference power is to be identified on leakage-free test sets.

To be more specific, from grounding files, for a particular grounding pattern
[h, t, r1, r2], the conclusions are fetched. Depending on the grounding-type, the
conclusion can be of two types. For implication and equivalence the conclusion is
in the format of {h, r2, t}. On the other hand, the inverse and symmetric conclu-
sion is {t, r2, h}. To detect potential leakages from the test set, detect_leakage()
function from leakage_detector.py script has been called which is illustrated in
figure 4.7.

This function takes a particular grounding data, the test data (which is to be
refined), and the corresponding grounding type (each type of grounding files are
saved separately ) as input. It provides the particular leakages which are exist-
ing in the test set in return. After getting the individual leakages per rule type
(implication, inverse, symmetric, and equivalence) with the help of the respective
grounding files, they are unified. The unification can be seen in figure 4.8. Finally,
those leakages were removed from the test set.
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Figure 4.7: Leakages detection from the test set

Figure 4.8: Combining all implication, inverse, symmetric and equivalence
leakages returned from detect_leakage() function
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4.5 Statistics of Groundings and Leakages

The statistical information generated by stat_gen.py script has been provided in
the table 4.1. This script is located in the DataGenerator folder. The general in-
formation, information of rules, grounding, and leakage of some popular knowledge
graph datasets have been provided in this table. It is observed that inverse and
symmetric groundings are mostly residing in FB15k and WN18. FB15k has mostly
inverse grounding (#70427). Throughout this paragraph # denotes the number in
integer. It contains significant leakages in the test set (total 72.57%), specifically,
inverse (59.4%). On the other hand, FB15k-237 has rules and groundings, but it
does not contain any leakage in the test set. WN18 contains only inverse and sym-
metric rules (#14 and #2) as well as groundings (7254 and 2092). This dataset
mostly contains inverse and symmetric leakage (72.12%), and (20.98%). However,
WN18RR [19] does not have any rules nor any groundings. Hence, leakages in
the test set can be taken out of consideration. Kinship only contains inverse and
symmetric groundings (#191 and #167). This dataset’s test set contains a to-
tal leakage of 11.36%, including inverse (6.33%) and symmetric leakage (5.02%).
Comparing to the other datasets, UMLS relatively contains a very less number of
rules (#6 implication and #2 inverse) and groundings (#41 implication and #14
inverse groundings) with a total number of 2.72% leakage in the test set. Among
all these mentioned datasets, FB15k and WN18 are the bigger ones to contain
leakages in the test set. FB15k, FB15k-237, WN18, and WN18RR have signifi-
cant numbers of entities. In terms of relation, FB15k contains the most among the
mentioned KGs. In FB15k-237, many relations are removed due to their leakage
patterns in the training set [16] [57], which is why there are no leakages to be seen
in its respective test set. Authors of [19] removed these leakages from WN18RR.
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Dataset FB15k FB15k-237 WN18 WN18RR Kinship UMLS
# of total triples 592213 310116 151442 93003 10666 6529
# of training data 483142 272115 141442 86835 8544 5216
# of test data 59071 20466 5000 3134 1074 661
# of validation data 50000 17535 5000 3034 1066 652
# of entities 14951 14541 40943 40943 104 135
# of relations 1345 237 18 11 25 46
# implication rule 97 9 0 0 0 6
# of inverse rule 351 12 14 0 9 2
# of symmetric rule 24 24 2 0 6 0
# of equivalence rule 68 2 0 0 0 0
# of implication grounding 4127 578 0 0 0 41
# of inverse grounding 70427 1516 7254 0 191 14
# of symmetric grounding 7740 7737 2092 0 167 0
# of equivalence grounding 8771 861 0 0 0 0
# of implication leakage 1369 0 0 0 0 12
% of implication leakage 2.3% 0% 0% 0% 0% 1.81%
# of inverse leakage 35089 0 3606 0 68 0
% inverse leakage 59.4% 0% 72.12% 0% 6.33% 0.9%
# of symmetric leakage 4216 0 1049 0 54 0
% of symmetric leakage 7.14% 0% 20.98% 0% 5.02% 0%
# of equivalence leakage 2197 0 0 0 0 0
% of equivalence leakage 3.72% 0% 0% 0% 0% 0%
# of total leakage 42871 0 4655 0 122 18
% of leakage 72.57% 0% 93.1% 0% 11.36% 2.72%
# triple in leakage free test set 18663 20466 345 3134 952 643

Table 4.1: General statistical, rules, grounding and leakage information of
datasets

4.6 Creating Test Sets With Relational Patterns

To explore the third research question, test sets containing specific patterns are
being created. Four different versions of test sets have been made for this pur-
pose. Each of these test file contains relation specific patterns from the test set.
For example, we can consider an implication rule if the premise {h, r1, t} and
its respective conclusion {h, r2, t} exists in the training file. Based on the relation
premises’ occurrences for each specific pattern type, the relations have been sorted,
and the top three are taken to be considered a medium to filter out the triples
from the test set. To generate the version of test sets, we consider four types of
patterns: symmetric, implication, inverse, and reflexive. Generation process for
each of the test set per pattern is described below in brief.
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Implication

• Combinations of all the pairwise relations (r1, r2) are taken into considera-
tion.

• Formulation of premises using {h, r1, t} has been done. It has been checked
that, for the premise {h, r1, t}, conclusions {h, r2, t} exists or not in the
training file.

• Topmost participating relation premises r1 are taken as a list of significant
candidates.

• In the test set, only triples with this list of significant candidate’s relations
(r1) are kept. All the others are dropped.

Inverse

• Combination of all the pairwise relations (r1, r2) are taken into consideration
(similar to implication pattern).

• Formulation of premises using {h, r1, t} has been done. It has been checked
that, for the premise {h, r1, t}, conclusions {t, r2, h} exists or not in the
training set.

• Topmost participating relation premise r1 are taken as a list of significant
candidates.

• In the test set, only triples with this list of significant candidate’s relations
r1 are kept. All the others are dropped.

Symmetric

• A checking has been done for each of the relation r, whether there exists any
{h, r, t} =⇒ {t, r, h} in the training set.

• Top three participating relations r for symmetric pattern has been consid-
ered.

• Only triples with these r are kept in the test set.
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Reflexive

• It has been checked whether triples exist with the same head and tail ({h, r, t}
where, h = t) in the training set.

• Top three participating relations r for reflexive pattern has been considered.

• Only triples with these r are kept in the test set.

In order to generate these test set per patterns, three different functions have been
developed. One function is responsible for generating implication and inverse
test pattern (generate_implication_inverse_test_pattern()). The other two
functions are for symmetric (generate_symmetric_test_pattern()) and reflexive
(generate_reflexive_test_pattern()) test patterns. These functions are residing
in test_per_pattern.py script in DataGenerator folder. Figure 4.9, illustrates
code section of the creation of implication and inverse test patterns. The first
function takes an input of training triples and the type of the pattern (implication
and inverse). Depending on the type provided, it is checked for each pair of
relations whether implication or inverse patterns exist in the training set or not.
Then it takes the topmost occurring premises r1, for which implication or inverse
patterns are existing. Then using those r1 only participating triples are filtered
from the test set. Finally, the output test_triple_pattern is returned where only
the triples containing such relation are existing.

For the reflexive pattern generation in the test set, topmost r, which participates
in reflexive relation {e, r, e} where {h, t} ∈ e are only taken, and triples containing
these r are only kept in the test set. Function generate_reflexive_test_pattern()

has been illustrated in figure 4.11, which demonstrates the process of creating such
test set which only consists of reflexive relational pattern. Figure 4.10, has been
used to generate symmetric patterns, as discussed above. For symmetric test
pattern. it is checked that, for each (h, r, t), symmetric conclusion (t, r, h), exists
in the training file or not. Only the three most appearing relations based on
reflexive pattern frequency are taken in the candidate relation list. Finally, to get
the test set’s symmetric version, only triples containing these relations from the
candidate relation list are kept only in the test set as discussed previously.
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Figure 4.9: Test triple generation only containing implication and inverse
pattern
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Figure 4.10: Test triple generation only containing symmetric test pattern

Figure 4.11: Test triple generation only containing reflexive test pattern



Chapter 5

Learning Relational Patterns

In this chapter, the implementation of the whole training process for the em-
bedding models is illustrated. This chapter covers the practical level details of
training and evaluation with or without injection of the groundings. Each of the
training processes, such as initialization, selection of appropriate score function,
and grounding injection, has been provided in detail.

Throughout the whole research, Github repository ATISE1 by Chengjin Xu (soledad921
(github username)) has been utilized, especially for the implementation part of
RULECT . This repository contains the implementation of [58] and [59]. For the
different parts of the implementation, plenty of unpublished codes of Chengjin Xu2

and Mojtaba Nayyeri3 have been used. Codes from OpenKE [48]4 and RotatE [4]5

have also been used to initialize various embedding models and their score func-
tion creation. The code of LogicENN [14] has been utilized through out the whole
research for implementation purpose, specially in the grounding generation, rule
injection, training and evaluation parts. The Github repository of PyKeen [47]6

has been helpful in terms of different aspects such as mapping generation.
1https://github.com/soledad921/ATISE
2https://scholar.google.com/citations?user=sIts5VgAAAAJ&hl=zh-CN
3https://scholar.google.com/citations?user=X785350AAAAJ&hl=en
4https://github.com/thunlp/OpenKE
5https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
6https://github.com/pykeen/pykeen
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Attribute name Value Description
data_dir directory path (string) data directory
name embedding model name (string) name of the embedding model
lr(α) learning rate (float) the learning rate of the training
negsample_num(C) integer the number of negative triple per positive
gamma(γ) float/integer the maximum margin

lam(λ / ξim) float/integer constant multiplier for rule loss
constant multiplier for implication rule loss

lam2(ξinv) float/integer constant multiplier for inverse rule loss
lam3(ξsym) float/integer constant multiplier for symmetric rule loss
lam4(ξeq) float/integer constant multiplier for equivalence rule loss

test_mode boolean (true/false) whether to only test the trained model.
In this case one has to import trained model.

saving boolean (true/false) whether to save trained model or not.
regul boolean (true/false) model training with regularization or not
train_with_groundings boolean (true/false) whether to inject rule/grounding or not
max_epoch integer the maximum number of epoch for training
dim(d) integer the embedding dimension for entities and relation
batch_size(β) integer the size of the minibatches
gpu boolean (true/false) Whether to use GPU or not

remove_grounding_inv boolean (true/false)
whether conversion to be done for

inverse grounding to implication.

remove_grounding_sym boolean (true/false)
whether conversion to be done for

symmetric grounding to inverse.
solver name of the optimizer (string) name of the optimizer should be specified
rev_set binary (0/1) whether to input reverse triple or not
fix_layer boolean (true/false) whether to use fix first layer for LogicENN or not

additional_model boolean (true/false)
whether dual model for LogicENN

to be initialized or not

Table 5.1: Information of the attributes for calling the training function

5.1 Starting the KGE Model’s Training Process

To learn relational patterns, we start from the train.py which resides in the root
folder of this RULECT project. The train() function has been called with the re-
quired parameters. This procedure has been illustrated in figure 5.1. The attribute
for calling the train() function has been briefly described in table 5.1.

After the training function has been called, training, testing, and validation files
from their respective dictionary specified in the parameter. If training with ground-
ing has been selected then, the four types of grounding files are also read from the
specified directory (the generation of these grounding files has been briefly dis-
cussed in chapter 4).
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Figure 5.1: call to the training function train() with required parameters and
model name

5.2 Model Initialization

After calling the train() function with specific attributes and reading the required
files, the model initialization has been done. In this part, the initialization of
the specified model with required parameters is demonstrated. This model ini-
tialization has been specified in model_initialization.py which is residing inside
model_utilities folder. In this script, the embedding model’s initialization pro-
cess and their respective score function are defined. Embedding model’s internal
parameters are set by creating a base_model object. A particular model’s ini-
tialization has been performed after calling the init_embedding() function while
initializing the class attributes. The implementation of the model initialization
process is demonstrated in figure 5.2. In the model initialization part, the embed-
ding space of entities (emb_E) and relations (emb_R) are initialized. For some
models, imaginary parts are present (RotatE, TransCompEx, complEx) as dis-
cussed in chapter 3. That is why emb_E_real, emb_E_im corresponds to the
real and imaginary parts of entity embedding. emb_R_real, and emb_R_im
corresponds to the imaginary embeddings of relations. For RotatE, phase initial-
ization of relation is required which is defined by emb_R_phase. For LogicENN
three additional layers has been defined fc1, fc2 and fc3 as done by the authors
of [14].
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Figure 5.2: Embedding model initialization and setting its internal attributes

5.3 Fetching Required Grounding

The required grounding files are read from the respective directory before starting
the iterative training process. Any case of empty grounding files (this happens
only when particular groundings are not present for any rule) is carefully handled.
The fetching of groundings and the start of iterative training is demonstrated in
figure 5.3.
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Figure 5.3: Fetching groundings and start of iterative training process

5.4 Iterative Training

The starting of the training process, fetching the positive triples, negative triples,
and groundings in mini-batches, are demonstrated in figure 5.3. The loss for
training triples is obtained by the generic training procedure of KGE models. At
the beginning of each iteration, the training file and the grounding files per rule
types are split into mini-batches. Then for each positive triple in the minibatch, C
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negative triples are generated randomly by corrupting either head or tail. The pos-
itive triples and negative triples are called iter_triple and iter_neg, respectively.
There are also other negative sampling techniques which have been integrated into
RULECT system, which are: Distributional Negative Sampling for Knowledge
Base Completion [60] and Affinity Dependent Negative Sampling for Knowledge
Graph Embeddings [61]7. These negative sampling methods are currently out
of the scope of this research. Hence, only random negative sampling is used for
training. Afterward, the initialized model’s forward() function has been called on
both positive (iter_triple) and negative (iter_neg) triples. The forward() func-
tion extracts the head h, tail t and relation r from triples. The calculate_score()
function is called from the inside of forward() function as illustrated in figure 5.4.
Then, the calculation of the score is performed for both iter_triple and iter_neg.
calculate_score() function is responsible for calculating the score of a particular
KGE model. The overall process of calculating the positive and negative score is
demonstrated in figure 5.4. It is shown in figure 5.4 that, head, tail and relation
are passed to the calculate_score(), which checks the models name and calcu-
lates score of triples (both positive and negative) by utilizing the score function of
that KGE model. For the sake of demonstrating the entire process of obtaining
the scores of triples, the respective KGE model’s score calculations are not shown
in figure 5.4. After getting the positive score (pos_score) and negative scores
(neg_score) per batch, a particular loss function (in this case adversarial loss [4])
is called from the script loss_functions.py which resides in the utilities folder.

The next steps of iterative training deal with rule injection process. To inject
rules, the grounding losses per rule types are obtained from the mini-batches of
the groundings. The rule_loss_calculation() function (illustrated in figure 5.6)
from loss_functions.py script is responsible for calculating the individual losses
for the groundings per mini-batch. The inputs of this function are: the groundings
in the format [h, t, r1, r2] for all grounding types and a constant variable ξ for each.
This function returns individual grounding losses per rule types based on algorithm
4, which is discussed in chapter 3. The selected model’s score function is used for
calculating the premise and conclusion score which are taken from the grounding
files. The score of the premise for all grounding loss calculation is similar in terms
of structure. For conclusion, two different structured inputs for the same function
are responsible for calculating rule losses due to the swapped positions of head(h)
and tail(t) between implication, equivalence with symmetric, inverse. Equation

7Author of this thesis is the first author of this paper.
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Figure 5.4: Call to the score function of particular KGE model

5.1 provides the premise’s score function for all the grounding types, which is
defined by the score function f of the selected KGE model. The output scores for
implication and equivalence groundings are defined in equation 5.2. Additionally,
equation 5.3 provides the output score for the conclusion of inverse and symmetric
grounding types.

output_premiseimp,inv,sym,equ = fmodel(h, r1, t) (5.1)

output_conclusionimp,equ = fmodel(h, r2, t) (5.2)

output_conclusioninv,sym = fmodel(t, r2, h) (5.3)

In order to inject rule, the mini-batched groundings are passed to the rule_loss_calculation()

function which resides in loss_functions.py script.
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Figure 5.5: Injecting rule losses with base loss

After all the grounding losses are calculated, they are averaged and added to the
base loss multiplied by a constant λ. Figure 5.5 shows the rest of the training
where grounding loss calculation and backpropagation is done.

One of the significant parts of this research is grounding loss generation for each
rule type. This has been discussed in algorithm 4 from chapter 3. Grounding loss
calculation per rule types is done by calling rule_loss_calculation() function.
Now the implementation of this function is illustrated in figure 5.6.

rule_loss_calculation() function (which is responsible for calculating the losses
for each grounding type) is residing in loss_functions.py script. As already dis-
cussed in algorithm 4, the input of this function are: a defined KGE model which
has a score function f , grounding data, grounding type and a constant ξ. In
this script, at first the grounding data is decomposed to head(h), tail(t), premise
relation(r1) and conclusion relation(r2). out_1 and out_2 are the score of the
premise and conclusion respectively. Based on the previous discussion, in the con-
clusion the h and t is reversed for inverse and symmetric relation. Which is why
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Figure 5.6: Function responsible for calculating grounding losses per rule type

there are different modes wrapped in if else condition. In the scope of the first if
condition, the section code checks the parameter mode. mode contains the type
of the grounding file in string format. Depending on the type between inverse,
symmetric and equivalence, implication, a particular condition executes. When-
ever out_1 (premise output) and out_2 (conclusion output) are calculated, based
on the constrains discussed in chapter 3, grounding loss is calculated.

5.5 LogicENN Extensions in RULECT

As discussed in the previous chapter, the LogicENN extensions have been inte-
grated into the system. Chapter 3 provides an idea of removal of groundings (can
be seen theoretically in the subsection 3.6.1 of chapter 3). The two parameters are
required at the beginning of the training process. Firstly, the removal of inverse
grounding and conversion to implication is done. Secondly, symmetric groundings
are removed and converted to equivalence grounding. To achieve this, depending
on the value of remove_grounding_inv and remove_grounding_sym Boolean
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flag, the mentioned groundings are converted and removed. According to the
logic discussed in subsection 3.6.1 of chapter 3, inverse grounding is converted to
implication and symmetric has been converted to equivalence.

Fixed layer implementation has been integrated as discussed in the subsection
3.6.2 of chapter 3. This process has been illustrated in figure 5.7. If the fix_layer
flag has been set to True, then the first layer fc1 has been uniformly initialized
between -1 and 1. The torch requires_grad variable for weight and bias is set
to be False, which makes this layer to not learn anything. The only parameters
meant for learning are provided in the optimizer function. The whole process has
been illustrated in figure 5.7.

Figure 5.7: Fixed layer implementation

The third extension has been notably considered using the double model for Log-
icENN. One model is required for original groundings, and one model is required
for reverse grounding (discussed in subsection 3.6.3 of chapter 3). Gathering the
reverse triple has been taken from implementation of obtaining the reverse triple
from the authors of LogicENN [14]. Initializing the dual model has been provided
in 5.8.

Figure 5.8: Initializing dual model



Chapter 6

Analysis and Utilization

This chapter presents the experimental results addressing the research questions.
In this chapter, at first, the evaluation metrics and the hyperparameters are ex-
plained is section 6.1. Then the result and analysis are presented which is ad-
dressed by each of the research questions in section 6.2. Subsection 6.2.1 shows
the effect of rule injection in KGE models, subsection 6.2.2 shows the effect of rule
injection on leakage-free test sets. Another subsection 6.2.3 in section 6.2 shows
the effect of rule injection on test set per pattern. Later parts namely the section
6.3 demonstrates the visualization of an extra module added to the system, which
is about visualizing trained embeddings.

In this section the experimental setup and the evaluation has been done. Three
key aspects is presented in the following sections:

• Experimental result of the mentioned KGE models in the system has been
provided, which consists of results before and after injection of rules, ad-
dressing the first research question.

• Model evaluation has been done using leakage-free test sets since one aim is
to identify whether rule injection helps if leakage-free test set is considered.
This evaluation addresses the second research question.

• Evaluation result with different test sets per pattern(discussed in details in
chapters 3 and 4) has been performed in order to identify whether rule in-
jection helps if only such patterns of test sets are considered. This addresses
the third research question.

64
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6.1 Experimental Setup

6.1.1 Evaluation Metrics

Standard evaluation metrics for link prediction are used for evaluating the models.
These metrics are: mean rank (MR), mean reciprocal rank (MRR), hit@1, hit@3,
hit@5, and hit@10. Test triples are ranked after corrupting each test triple (either
with head or tail) with all the possible entities. The position of a particular true
test triple against all the corrupted ones is considered as its rank. In filtered
settings, the candidate test triples do not appear in training, test, or validation
triples [4]. On the other hand, it may or may not appear in train, test, or validation
set in raw settings. If the position of a particular true test triple comes on top
against all the other corresponding corrupted test triples, then it is considered as
a hit@1. For the other metrics such as hit@3, hit@5, and hit@10, the candidate
test triple has to appear among the top 3, 5, or 10.

6.1.2 Hyperparameter settings

For the fairness of the experiments, the hyperparameters are kept the same for
rule injected embedding model and no-rule injected model. All the models are
evaluated in terms of standard link prediction evaluation metrics: mean rank
(MR), mean reciprocal rank (MRR), hit@1, hit@3, hit@5, and hit@10.

For FB15k, for models (RotatE, TransComplEx, Distmult, TransE and ComplEx)
the learning rate is α=0.1, rule loss multiplier is λ = 0.01, implication rule loss
constant ξIm = 0.01, inverse rule loss constant ξIn = 0.1, symmetric rule loss con-
stant ξSym = 0.01, and equivalence rule loss constant ξEq = 0.1, the embedding
dimension is d = 200, the number of negative sample is C=10, margin is γ =
30 (for all models except TransE), γ=10 (for TransE), temperature is τ=0.0 and
the epoch number is E=50. LogicENN uses a learning rate α=0.001. For the
LogicENN model, to obtain better results, the inverse grounding and symmet-
ric grounding have been removed and converted to implication and equivalence.
The reverse triple parameter rev_set is set to True to include reverse triples for
the LogicENN model. the learning rate α is 0.001 for LogicENN. For RotatE,
TransComplEx, and TransE L1 norm has been used, and the regul parameter
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is set to False. For ComplEx and Distmult regularization term has been added
to achieve better results; in this case, the regul parameter is set to True. For
RotatE, TransComplEx, TransE and LogicENN the regul parameter is by default
set to False in this system. While initializing these models, a parameter is passed
whether the L1 or L2 norm has to be selected. For ComplEx and Distmult, the
regul parameter needs to be set to true value to select the respective regularization
as a separate calculation. For ComplEx and Distmult, the combination of logistic
loss function [5] and self-adversarial negative sampling [4] has been used as the loss
function. For LogicENN same loss function has been used, but without regular-
ization, and at the end of each epoch, normalization of embeddings has been done.
For TransE, TransComplEx, and RotatE, the adversarial loss [4] has been used. In
case of RotatE, TransE, TransComplEx, ComplEx and Distmult adaptive gradient
descent optimizer (Adagrad) has been used. For the optimization of LogicENN
Adam optimizer has been utilized. For FB15k-237, every setting mentioned above
kept the same except for LogicENN. In LogicENN for FB15k-237, the optimizer
is AdamW [62] and the epoch E is set to 100. For WN18 dataset, similar settings
have been used for all the models. For LogicENN and WN18 dataset, the epoch
E is kept at 200, no reverse settings (rev_set=False) has been used, and no rule
conversion has been done.

The parameter for Kinship dataset are: learning rate α=0.1, embedding dimension
d=200, the number of negative sample C=40. rule loss multiplier λ = 0.01, in-
verse rule loss constant ξIn = 0.1, symmetric rule loss constant ξSym = 0.01 (since,
here only symmetric and inverse groundings are present). These settings are the
same for all models for the kinship dataset. The epoch E=100 for all models,
except TransComplEx (E=200). The margin γ is set to 24 for RotatE. γ=15 is
set for TransComplEx, ComplEx, LogicENN, and Distmult. For TransE γ=10 is
set. For LogicENN and RotatE, temperature τ is set to 0.01. For ComplEx, Dist-
mult, TransComplEx, TransE temperature τ is set to 0. For RotatE, ComplEx,
TransComplEx, Distmult, and TransE Adagrad optimizer has been used. On the
other hand, For LogicENN, AdamW optimizer has been used as mentioned previ-
ously. Reverse settings rev_set has been turned to False for all the models except
LogicENN. We used the converted groundings (inverse to implication, symmet-
ric to equivalence) settings for LogicENN to obtain better results. Similar Loss
functions have been used as mentioned for FB15k, FB15k-237, and WN18.

For UMLS dataset, all the models have a learning rate α=0.1, except LogicENN,



Analysis and Utilization 67

which has a learning rate λ=0.001. The negative sampling C=50 is kept for all the
mentioned models. The embedding dimension is: d=200 for RotatE, TransCom-
plEx, Distmult, ComplEx and TransE. For RotatE, the embedding dimension is
d=100. The temperature τ=0.0 is set for all the models. The batch size β=1000
is kept for all the models except LogicENN. Batch size β for LogicENN is set at
the value 2750. Similar loss functions, as previously mentioned, are used for all
the models. For All the models except LogicENN, no grounding conversion has
been done, and no reverse settings, namely rev_set is set to False. For LogicENN
inverse grounding is converted to implication. UMLS dataset has only grounding
for implication and inverse rule. The inverse rule loss constant ξIn is kept at as
previously 0.1 and symmetric rule loss constant ξSym is set to 0.01 similar to other
datasets. The rule loss multiplier is set to, λ = 0.01.

6.2 Result and Analysis

6.2.1 Evaluation With Versus Without Rule Injection

In this section, it is observed that whether rule injection improves the performance
of embedding models or not. From table 6.1 shows that injection of rule improves
the performance of embedding models. Table 6.1 illustrates that RotatE, Com-
plEx and TransComplEx have significant improvements in embedding model per-
formance in terms of almost all performance metrics (MR, MRR, Hit@1, Hit@3,
Hit@5, and Hit@10) for both Raw and Filtered settings. The filtered Hit@1,
Hit@3, Hit@5 and Hit@10 for RotatE have been improved from 0.5061, 0.7255,
0.7801, 0.8385 to 0.6016, 0.8004, 0.8381, 0.8758 respectively. For TransComplEx,
filtered Hit@3 has been improved from 0.7181 to 0.7466, filtered Hit@1 becomes
from 0.5762 to 0.6052, and filtered Hit@5 becomes from 0.8141 to 0.8326. The
complEx also has much improvement after injection of rules, especially in Hit@1,
Hit@3 and Hit@5. The other models also have a slight gain in performance im-
provement for the FB15k dataset.

Table 6.2 shows the effect of rule injection in FB15k-237 dataset. It can be ob-
served that on this dataset, rule injection has very less effect on performance. Even
in some cases, performance deteriorates slightly (especially in RotatE, TransCom-
plEx, TransE, and LogicENN) across several performance metrics. Only ComplEx



Analysis and Utilization 68

Model MR MRR Hit@1 Hit@3 Hit@5 Hit@10
Raw Filtered Raw Filtered Raw Filtered Raw Filtered Raw Filtered Raw Filtered

RotatE 202 48 0.2556 0.6324 0.1387 0.5061 0.2888 0.7255 0.3854 0.7801 0.5152 0.8385
RotatE (Injection) 166 46 0.3020 0.7116 0.1813 0.6016 0.3465 0.8004 0.4392 0.8381 0.5590 0.8758
ComplEx 279 125 0.2566 0.6958 0.1428 0.5983 0.2896 0.7741 0.3837 0.8072 0.5100 0.8415
ComplEx (Injection) 243 117 0.2875 0.7455 0.1711 0.6643 0.3276 0.8113 0.4201 0.8355 0.5390 0.8610
Distmult 259 115 0.2651 0.6205 0.1497 0.4912 0.3014 0.7191 0.3947 0.7772 0.5181 0.8351
Distmult (Injection) 240 113 0.2810 0.6508 0.1653 0.5282 0.3200 0.7466 0.4104 0.8008 0.5319 0.8489
TransComplEx 187 41 0.2798 0.6851 0.1628 0.5762 0.3160 0.7677 0.4115 0.8141 0.5389 0.8606
TransComplEx (Injection) 159 40 0.3030 0.7092 0.1856 0.6052 0.3433 0.7910 0.4350 0.8326 0.5573 0.8746
TransE 162 53 0.2643 0.4478 0.1564 0.3252 0.2960 0.5119 0.3788 0.5844 0.4934 0.6770
TransE (Injection) 160 54 0.2672 0.4511 0.1590 0.3285 0.3005 0.5173 0.3805 0.5889 0.4958 0.6806
LogicENN 276 146 0.2702 0.5134 0.1549 0.3740 0.3062 0.5973 0.3961 0.6892 0.5217 0.7854
LogicENN (Injection) 286 157 0.2675 0.5115 0.1534 0.3740 0.3034 0.6000 0.3936 0.6897 0.5179 0.7867

Table 6.1: Evaluation of rule injected model versus no rule injected model on
FB15k dataset

Model MR MRR Hit@1 Hit@3 Hit@5 Hit@10
Raw Filtered Raw Filtered Raw Filtered Raw Filtered Raw Filtered Raw Filtered

RotatE 384 183 0.1614 0.2846 0.0959 0.1942 0.1632 0.3118 0.2145 0.3781 0.3004 0.4681
RotatE (Injection) 383 183 0.1611 0.2810 0.0956 0.1906 0.1631 0.3081 0.2124 0.3719 0.3016 0.4643
ComplEx 936 721 0.0410 0.1072 0.0169 0.0691 0.0335 0.1127 0.0465 0.1355 0.0738 0.1627
ComplEx (Injection) 935 721 0.0418 0.1094 0.0175 0.0706 0.0335 0.1159 0.0483 0.1394 0.0751 0.1664
Distmult 937 724 0.0563 0.1366 0.0242 0.0844 0.0494 0.1467 0.0722 0.1828 0.1132 0.2333
Distmult (Injection) 927 714 0.0576 0.1382 0.0249 0.0855 0.0512 0.1494 0.0726 0.1846 0.1149 0.2354
TransComplEx 352 185 0.1690 0.2622 0.1029 0.1765 0.1744 0.2836 0.2220 0.3467 0.3467 0.4387
TransComplEx (Injection) 351 185 0.1697 0.2577 0.1045 0.1706 0.1743 0.2811 0.2209 0.3432 0.3046 0.4344
TransE 347 172 0.1687 0.2687 0.1011 0.1802 0.1753 0.2949 0.2246 0.3569 0.3079 0.4455
TransE (Injection) 348 174 0.1691 0.2650 0.1025 0.1760 0.1752 0.2901 0.2224 0.3550 0.3074 0.4463
LogicENN 887 680 0.0963 0.1588 0.0486 0.0910 0.0928 0.1685 0.1260 0.2170 0.1910 0.2987
LogicENN (Injection) 890 683 0.0898 0.1513 0.0417 0.0823 0.0849 0.1605 0.1202 0.2120 0.1890 0.2952

Table 6.2: Evaluation of rule injected model versus no rule injected model on
FB15k-237 dataset

and Distmult is showing slight improvement in performance. For example, for
ComplEx, the Hit@10 improves slightly from 0.1627 to 0.1664 in filtered settings.

Table 6.3 illustrates that rule injection has slight improvement margin on WN18
dataset. For RotatE and ComplEx, it can be observed that rule injection improve-
ment in raw settings and slight improvements in filtered settings. For example,
in the case of RotatE, Hit@10 improves from 0.8150 to 0.8352 in raw settings,
and Hit@10 increases from 0.9567 to 0.9584 in filtered settings. For TransCom-
plEx, performance is decreased after rule injection in almost all the metrics. For
TransE, performance slightly decreases upon rule injection. From the Distmult
model’s evaluations, it is seen that rule injection improves the performance by
a tiny amount of margin. LogicENN has a good effect of rule injection in this
dataset since there are observable improvements in performance after rule injec-
tion for LogicENN and WN18 dataset. For LogicENN Hit@1 has been improved
from 0.8059 to 0.8848, Hit@5 has been improved from 0.8889 from 0.9429 and
Hit@10 has been improved from 0.9223 to 0.9458 in filtered settings. In raw set-
tings, significant performance improvement can be seen.

Table 6.4 shows the effect of rule injection on Kinship dataset. It can be observed
that rule injection improves all the embedding models’ performance in terms of
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Model MR MRR Hit@1 Hit@3 Hit@5 Hit@10
Raw Filtered Raw Filtered Raw Filtered Raw Filtered Raw Filtered Raw Filtered

RotatE 353 338 0.5914 0.9453 0.4711 0.9386 0.6691 0.9500 0.7456 0.9531 0.8150 0.9567
RotatE (Injection) 339 328 0.6029 0.9463 0.4794 0.9398 0.6834 0.9504 0.7623 0.9537 0.8352 0.9584
ComplEx 862 850 0.5971 0.9435 0.4812 0.9417 0.6718 0.9445 0.7477 0.9454 0.8159 0.9462
ComplEx (Injection) 801 791 0.6008 0.9434 0.4844 0.9413 0.6755 0.9447 0.7539 0.9457 0.8231 0.9471
Distmult 651 638 0.5028 0.8091 0.3471 0.6947 0.6048 0.9202 0.7078 0.9332 0.8006 0.9453
Distmult (Injection) 658 646 0.5094 0.8177 0.3548 0.7111 0.6112 0.9202 0.7123 0.9340 0.8043 0.9457
TransComplEx 286 274 0.5094 0.7882 0.3531 0.6887 0.6088 0.8760 0.7130 0.9193 0.8119 0.9469
TransComplEx (Injection) 246 233 0.4464 0.6669 0.2922 0.5245 0.5227 0.7855 0.6516 0.8728 0.7844 0.9278
TransE 242 230 0.3323 0.4811 0.0416 0.0925 0.5629 0.8650 0.6912 0.9221 0.8067 0.9466
TransE (Injection) 217 204 0.3231 0.4719 0.0466 0.1008 0.5340 0.8366 0.6718 0.9131 0.8003 0.9444
LogicENN 481 467 0.5644 0.8514 0.4426 0.8059 0.6423 0.8889 0.7189 0.9062 0.7945 0.9223
LogicENN (Injection) 487 480 0.6996 0.9117 0.5976 0.8848 0.7791 0.9371 0.8342 0.9429 0.8773 0.9458

Table 6.3: Evaluation of rule injected model versus no rule injected model on
WN18 dataset

Model MR MRR Hit@1 Hit@3 Hit@5 Hit@10
Raw Filtered Raw Filtered Raw Filtered Raw Filtered Raw Filtered Raw Filtered

RotatE 11 2 0.1422 0.7788 0.0154 0.6555 0.0824 0.8827 0.1853 0.9469 0.5349 0.9767
RotatE (Injection) 11 2 0.1530 0.7956 0.0233 0.6853 0.0968 0.8901 0.2058 0.9437 0.5587 0.9823
ComplEx 12 3 0.1343 0.7265 0.0121 0.5940 0.0722 0.8366 0.1760 0.9055 0.4986 0.9562
ComplEx (Injection) 11 3 0.1417 0.7385 0.0149 0.6024 0.0857 0.8506 0.1867 0.9162 0.5331 0.9669
Distmult 14 6 0.1232 0.4513 0.0158 0.3012 0.0791 0.4977 0.1504 0.6196 0.3822 0.8203
Distmult (Injection) 14 6 0.1269 0.4539 0.0186 0.2970 0.0796 0.5047 0.1606 0.6280 0.3957 0.8315
TransComplEx 10 4 0.1939 0.5387 0.0526 0.3482 0.1681 0.6550 0.2924 0.7993 0.5926 0.9385
TransComplEx (Injection) 10 4 0.1930 0.5401 0.0480 0.3450 0.1723 0.6667 0.2947 0.8031 0.5978 0.9437
TransE 15 9 0.1317 0.2607 0.0079 0.0196 0.0982 0.3901 0.1997 0.5442 0.4516 0.7556
TransE (Injection) 14 8 0.1340 0.2657 0.0098 0.0228 0.1043 0.3976 0.1941 0.5689 0.4520 0.7584
LogicENN 11 2 0.1497 0.8148 0.0191 0.7104 0.1010 0.9064 0.2034 0.9483 0.5456 0.9772
LogicENN (Injection) 11 2 0.1491 0.8108 0.0186 0.7025 0.1015 0.9055 0.2016 0.9516 0.5480 0.9818

Table 6.4: Evaluation of rule injected model versus no rule injected model on
Kinship dataset

most of the performance metrics. Especially in case of filtered Hit@1 for RotatE
which has an improvement from 0.6555 to 0.6853. For ComplEx filtered Hit@3
improved from 0.8366 to 0.8506.

Model MR MRR Hit@1 Hit@3 Hit@5 Hit@10

Raw Filtered Raw Filtered Raw Filtered Raw Filtered Raw Filtered Raw Filtered

RotatE 19 1 0.1183 0.8892 0.0121 0.8079 0.0809 0.9667 0.1596 0.9856 0.3714 0.9955
RotatE (Injection) 18 1 0.1239 0.8791 0.0174 0.7905 0.0870 0.9637 0.1611 0.9924 0.3790 0.9977

ComplEx 21 4 0.0999 0.5802 0.0076 0.3926 0.0590 0.7194 0.1195 0.8253 0.2844 0.9395
ComplEx (Injection) 20 4 0.1055 0.6111 0.0091 0.4365 0.0719 0.7383 0.1278 0.8525 0.2995 0.9402

Distmult 23 7 0.0900 0.4667 0.0061 0.3079 0.0492 0.5499 0.0983 0.6483 0.2390 0.8011
Distmult (Injection) 23 6 0.1001 0.4850 0.0113 0.3275 0.0658 0.5620 0.1165 0.6762 0.2693 0.8124

TransComplEx 18 1 0.1203 0.8869 0.0151 0.8185 0.0840 0.9470 0.1664 0.9796 0.3684 0.9955
TransComplEx (Injection) 18 1 0.1300 0.8833 0.0212 0.8116 0.0976 0.9440 0.1747 0.9750 0.3722 0.9955

TransE 15 9 0.1317 0.2607 0.0079 0.0196 0.0982 0.3901 0.1997 0.5442 0.4516 0.7556
TransE (Injection) 14 8 0.1340 0.2657 0.0098 0.0228 0.1043 0.3976 0.1941 0.5689 0.4520 0.7584

LogicENN 18 1 0.1341 0.9115 0.0250 0.8585 0.1021 0.9614 0.1762 0.9818 0.3858 0.9939
LogicENN (Injection) 18 1 0.1363 0.9109 0.0280 0.8563 0.1036 0.9622 0.1793 0.9773 0.3880 0.9947

Table 6.5: Evaluation of rule injected model versus no rule injected model on
UMLS dataset

Table 6.5, provides an illustration of the effect of rule injection on UMLS dataset.
From the result, it is observable that rule injection improves all the embedding
models’ performance. It is observable that Hit@3 improved from 0.7194 to 7383 for
ComplEx after injection in filtered settings. For Distmult Hit@3 has an improve-
ment from 0.5499 to 0.5620 in filtered settings.Hit@1 also has some significant
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improvement in filtered settings, especially for ComplEx and Distmult. Improve-
ment in performance for Hit@5 is also noticeable for ComplEx (from 0.8253 to
0.8525) and Distmult (from 0.6483 to 0.6762).

6.2.2 Evaluation With Versus Without Rule Injection on

Leakage Free Test Set

This subsection provides the evaluation of the previously trained models on leakage-
free test sets. The process and the idea of leakage removal from the test set have
already been discussed in section 4.4 at chapter 4. Underlying leakage in the test
set makes the link prediction task easier. Previously a portion of this research [6],
showed the injection of rules improves the performance of RotatE and TransE,
and in case of the removal of leakages from the test set, rule injection does not
help that much. A comprehensive evaluation of the previously trained models on
the mentioned datasets is performed on leakage free test sets in this subsection.

Model MR MRR Hit@1 Hit@3 Hit@5 Hit@10

Raw Filtered Raw Filtered Raw Filtered Raw Filtered Raw Filtered Raw Filtered

RotatE 316 147 0.2305 0.3979 0.1409 0.2824 0.2540 0.4593 0.3158 0.5290 0.4134 0.6126
RotatE (Injection) 317 148 0.2311 0.3937 0.1418 0.2781 0.2541 0.4543 0.3183 0.5229 0.4138 0.6085

ComplEx 563 392 0.2023 0.3615 0.1263 0.2666 0.2178 0.4074 0.2720 0.4664 0.3609 0.5395
ComplEx (Injection) 545 374 0.2027 0.3614 0.1257 0.2657 0.2175 0.4071 0.2738 0.4676 0.3622 0.5436

Distmult 529 361 0.2081 0.3461 0.1300 0.2451 0.2241 0.3941 0.2807 0.4572 0.3716 0.5394
Distmult (Injection) 529 360 0.2083 0.3466 0.1299 0.2458 0.2246 0.3924 0.2800 0.4584 0.3722 0.5416

TransComplEx 294 126 0.2524 0.4255 0.1665 0.3211 0.2744 0.4793 0.3344 0.5441 0.4294 0.6226
TransComplEx (Injection) 295 127 0.2542 0.4242 0.1695 0.3199 0.2742 0.4780 0.3355 0.5401 0.4288 0.6207

TransE 236 110 0.2602 0.3773 0.1707 0.2711 0.2848 0.4240 0.3493 0.4928 0.4411 0.5837
TransE (Injection) 238 112 0.2580 0.3754 0.1689 0.2688 0.2824 0.4221 0.3449 0.4932 0.4402 0.5820

LogicENN 584 421 0.2022 0.3075 0.1214 0.2070 0.2218 0.3487 0.2786 0.4184 0.3670 0.5087
LogicENN (Injection) 548 386 0.2055 0.3129 0.1244 0.2126 0.2249 0.3535 0.2801 0.4232 0.3729 0.5152

Table 6.6: Evaluation of rule injected model versus no rule injected model on
FB15k dataset on leakage-free test set

Table 6.6 shows the evaluation result of the effect of rule injection if leakages are
removed from the test set of FB15k. It is observed that, for RotatE, TransCom-
plEx, and TransE, previously trained rule injected models do not perform well
(no improvement in performance) on the FB15k dataset. On the other hand, rule
injected models perform slightly better on ComplEx, Distmult, and LogicENN.
FB15k-237 does not have any leakages in the test set, which is why no such eval-
uation has been done for FB15k-237. Generally, all the previously trained models
perform worse compared to original test sets on leakage-free test sets (in the case
of both rule injected and no rule injected trained models).



Analysis and Utilization 71

Model MR MRR Hit@1 Hit@3 Hit@5 Hit@10
Raw Filtered Raw Filtered Raw Filtered Raw Filtered Raw Filtered Raw Filtered

RotatE 4910 4891 0.1908 0.2620 0.1130 0.2043 0.2261 0.2884 0.2913 0.3275 0.3348 0.3768
RotatE (Injection) 4753 4734 0.1845 0.2570 0.1000 0.1928 0.2246 0.2884 0.2971 0.3304 0.3507 0.3971
ComplEx 12331 12312 0.1135 0.1779 0.0609 0.1551 0.1536 0.1870 0.1826 0.2014 0.1971 0.2116
ComplEx (Injection) 11466 11447 0.1094 0.1743 0.0551 0.1493 0.1464 0.1812 0.1841 0.2000 0.1986 0.2246
Distmult 9239 9220 0.1299 0.1968 0.0710 0.1652 0.1696 0.2043 0.2072 0.2261 0.2275 0.2522
Distmult (Injection) 9357 9339 0.1178 0.1856 0.0536 0.1493 0.1580 0.2029 0.2029 0.2246 0.2290 0.2536
TransComplEx 3970 3951 0.1241 0.1605 0.0464 0.0739 0.1406 0.1899 0.2101 0.2478 0.2913 0.3275
TransComplEx (Injection) 3352 3334 0.1292 0.1640 0.0522 0.0797 0.1493 0.1986 0.2072 0.2478 0.2957 0.3246
TransE 3323 3304 0.0705 0.0872 0.0014 0.0043 0.0652 0.1043 0.1449 0.1870 0.2478 0.2768
TransE (Injection) 2941 2922 0.0727 0.0899 0.0029 0.0043 0.0710 0.1101 0.1406 0.1855 0.2493 0.2826
LogicENN 6630 6611 0.0972 0.1379 0.0493 0.1058 0.1159 0.1464 0.1536 0.1652 0.1841 0.1928
LogicENN (Injection) 6964 6945 0.1057 0.1497 0.0551 0.1101 0.1333 0.1696 0.1681 0.1928 0.2014 0.2188

Table 6.7: Evaluation of rule injected model versus no rule injected model on
WN18 dataset on leakage-free test set

Model MR MRR Hit@1 Hit@3 Hit@5 Hit@10
Raw Filtered Raw Filtered Raw Filtered Raw Filtered Raw Filtered Raw Filtered

RotatE 11 2 0.1414 0.7606 0.0158 0.6324 0.0751 0.8687 0.1849 0.9380 0.5431 0.9737
RotatE (Injection) 11 2 0.1419 0.7721 0.0158 0.6523 0.0793 0.8724 0.1875 0.9354 0.5389 0.9800
ComplEx 12 3 0.1328 0.7072 0.0116 0.5704 0.0678 0.8188 0.1754 0.8955 0.5026 0.9506
ComplEx (Injection) 12 3 0.1327 0.7132 0.0084 0.5693 0.0741 0.8277 0.1691 0.9039 0.5173 0.9627
Distmult 15 6 0.1199 0.4257 0.0142 0.2705 0.0720 0.4690 0.1460 0.5993 0.3824 0.8072
Distmult (Injection) 15 6 0.1212 0.4280 0.0152 0.2700 0.0725 0.4722 0.1528 0.5972 0.3813 0.8146
TransComplEx 10 4 0.1928 0.5231 0.0536 0.3314 0.1644 0.6397 0.2889 0.7847 0.5914 0.9322
TransComplEx (Injection) 11 4 0.1860 0.5209 0.0415 0.3246 0.1654 0.6444 0.2852 0.7847 0.5893 0.9359
TransE 15 9 0.1332 0.2582 0.0084 0.0194 0.1003 0.3797 0.2059 0.5394 0.4575 0.7542
TransE (Injection) 14 9 0.1341 0.2614 0.0095 0.0226 0.1056 0.3866 0.1991 0.5583 0.4496 0.7489
LogicENN 11 2 0.1482 0.7912 0.0184 0.6770 0.0951 0.8887 0.2027 0.9401 0.5525 0.9743
LogicENN (Injection) 11 2 0.1453 0.7856 0.0163 0.6660 0.0914 0.8881 0.1980 0.9443 0.5499 0.9795

Table 6.8: Evaluation of rule injected model versus no rule injected model on
Kinship dataset on leakage-free test set

Table 6.7 shows the effect of rule injection on leakage-free test sets on WN18. The
overall performance metrics have been decreased after using leakage-free test sets
drastically for the trained models. As already said these models has been trained
for the evaluation of previous subsection namely subsection 6.2.1. For some mod-
els, rule injection slightly improves performance measures if the test set has been
replaced with a leakage-free version. It can be observed that For RotatE in WN18
dataset rule injection helps in terms of Hit@5 (filtered hit@10 increased from
0.3275 to 0.3304) and Hit@10 (filtered hit@10 increased from 0.3768 to 0.3971).
For other models such as ComplEx, Distmult, and TransE, rule injection enables
slightly better performance for previously trained rule injected models. TransCom-
plEx provides slightly worse performance in terms of Hit@10.

For the Kinship dataset, slight improvement can be seen according to table 6.8. Ro-
tatE, ComplEx, Distmult, TransComplEx, TransE, and LogicENN showed slightly
better performance metrics in Hit@10. In terms of Hit@1 in filtered settings, Ro-
tatE only showed better performance (Hit@1 increased from 0.6324 to 0.6523).
In terms of Hit@3 filtered settings, all the models except LogicENN performed
slightly better than non-rule injected models on leakage-free test sets. In the case
of Hit@5, filtered settings, only ComplEx and LogicENN performed slightly better.
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Model MR MRR Hit@1 Hit@3 Hit@5 Hit@10
Raw Filtered Raw Filtered Raw Filtered Raw Filtered Raw Filtered Raw Filtered

RotatE 18 2 0.1195 0.8796 0.0124 0.7916 0.0816 0.9658 0.1610 0.9844 0.3764 0.9953
RotatE (Injection) 18 2 0.1209 0.8479 0.0148 0.7348 0.0824 0.9603 0.1571 0.9922 0.3771 0.9977
ComplEx 18 2 0.1214 0.8651 0.0156 0.7784 0.0848 0.9448 0.1680 0.9790 0.3733 0.9953
ComplEx (Injection) 18 2 0.1261 0.8515 0.0179 0.7543 0.0918 0.9417 0.1695 0.9743 0.3678 0.9953
Distmult 23 7 0.0905 0.4652 0.0062 0.3056 0.0490 0.5474 0.0980 0.6509 0.2411 0.8040
Distmult (Injection) 23 7 0.0962 0.4808 0.0070 0.3219 0.0599 0.5544 0.1120 0.6788 0.2667 0.8165
TransComplEx 18 2 0.1214 0.8651 0.0156 0.7784 0.0848 0.9448 0.1680 0.9790 0.3733 0.9953
TransComplEx (Injection) 18 2 0.1261 0.8515 0.0179 0.7543 0.0918 0.9417 0.1695 0.9743 0.3678 0.9953
TransE 19 3 0.1063 0.467 0.0039 0.0420 0.0708 0.8966 0.1369 0.9619 0.3437 0.9891
TransE (Injection) 19 3 0.1034 0.4554 0.0023 0.0350 0.0661 0.8725 0.1314 0.9432 0.3336 0.9899
LogicENN 17 1 0.1357 0.9002 0.0257 0.8390 0.1034 0.9565 0.1781 0.9813 0.3911 0.9938
LogicENN (Injection) 18 1 0.1376 0.9015 0.0288 0.8406 0.1034 0.9603 0.1796 0.9767 0.3935 0.9946

Table 6.9: Evaluation of rule injected model versus no rule injected model on
UMLS dataset on leakage-free test set

Table 6.9 shows the effect of rule injection on leakage-free test sets of UMLs
dataset. It is observed that RotatE, Distmult, TransE, and LogicENN gained
slight improvement in performance in terms of Hit@10 filtered settings. Hit@5
improved for RotatE and Distmult. Hit@1 decreased for all the models after rule
injection.

6.2.3 Evaluation With Versus Without Rule Injection on

Test Set per Pattern

In this subsection, the evaluation of the above trained models (both rule injected
and no rule injected trained models) is demonstrated on test sets of specific pat-
terns. Test set generation considering such patterns is briefly described in section
4.6 of chapter 4. Table 6.10, 6.11, 6.12, 7.1 (in Appendix) and 7.2 (in Appendix)
demonstrates the previously trained model’s performance on the test set consid-
ering specific pattern, namely implication, inverse, symmetric and reflexive test
pattern. The investigation is done to determine whether rule injection makes the
link prediction task easier for such test sets or not, specifically for investigating
the third research question. It turns out that the embedding models are capable
of performing well enough on such test sets even without rule injection. Upon
careful observation from comparing the result from tables of subsection 6.2.1 with
this subsection (6.2.3), it is clear that the same trained models perform well on test
sets with specific patterns compared to original test set. It means that models are
trained in such a way so that they become capable of identifying those patterns.
Additionally, rule injection makes these models learn those patterns more easily.

Table 6.10 demonstrates that all the model’s prediction performance increases if
the test set consisting of such patterns are only considered on FB15k. On top
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of that, rule injected models show an additional boost in the performance. For
implication test patterns, rule injection helps RotatE, ComplEx, TransE, Distmult,
and LogicENN. The same things can be said for inverse patterns for these models
except TransE and LogicENN in this dataset. For symmetric, the performance
increases in RotatE, ComplEx and LogicENN. For reflexive patterns, each model
performs well whether rule injection is performed or not.

Result for test set per pattern on FB15k-237 is demonstrated in table 6.11. It can
be observed that rule injection is making some models perform worse than non-
rule injected model. Only ComplEx is performing better with injected rules for
test sets consisting of implication patterns. For predicting inverse test patterns,
RotatE and ComplEx are performing well with the rule injected model. In the
case of symmetric pattern, RotatE is performing better with a trained rule injected
model.

Table 6.12 demonstrates the evaluation performance on test set per pattern on
WN18. It is observed that for implication, symmetric and inverse test, and re-
flexive test patterns, LogicENN is performing well upon injection of rules. The
performance of RotatE and ComplEx slightly increases in terms of filtered hit@10.
Other models such as RotatE and ComplEx have a slight increase in performance
in Hit@10 across all test patterns.

The evaluation tables for Kinship (table 7.1 in Appendix) and UMLS (table 7.2
in Appendix) for test set per pattern have been moved to Appendix. Table 7.1
from the Appendix shows the evaluation result of Kinship. It is observed that, for
symmetric test pattern of Kinship dataset, all the rule injected models perform
well upon rule injection across all the performance metrics. In the inverse pattern,
rule injected models performed comparably worse than no rule injected models in
the kinship dataset except Distmult.

The reflexive pattern is not detected in the UMLS dataset. According to table
7.2 from Appendix which is demonstrating the evaluation result of UMLS, Rule
injected RotatE model is performing better than non rule injected RotatE model
across all the test patterns (implication, inverse, and symmetric). Though some
models do have a slightly better performance margin, in most cases, performance
decreases with rule injection in this dataset.
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Test Pattern Model MRR Hit@1 Hit@3 Hit@5 Hit@10

Implication

RotatE 0.8771 0.8156 0.9322 0.9502 0.9661
RotatE (Injection) 0.9125 0.8698 0.9527 0.9669 0.9741
ComplEx 0.9033 0.8518 0.9510 0.9638 0.9738
ComplEx (Injection) 0.9084 0.8572 0.9563 0.9669 0.9761
Distmult 0.8283 0.7411 0.9022 0.9296 0.9599
Distmult (Injection) 0.8473 0.7694 0.9140 0.9474 0.9643
TransComplEx 0.8989 0.8382 0.9556 0.9751 0.9854
TransComplEx (Injection) 0.8948 0.8310 0.9556 0.9733 0.9833
TransE 0.6506 0.5455 0.7098 0.7740 0.8580
TransE (Injection) 0.6753 0.5722 0.7401 0.7974 0.8631
LogicENN 0.6295 0.4617 0.7524 0.8618 0.9489
LogicENN (Injection) 0.6527 0.4944 0.7655 0.8716 0.9520

Inverse

RotatE 0.7499 0.6495 0.8286 0.8786 0.9210
RotatE (Injection) 0.7969 0.7114 0.8642 0.9037 0.9340
ComplEx 0.8476 0.7905 0.8977 0.9161 0.9298
ComplEx (Injection) 0.8497 0.7926 0.8962 0.9168 0.9326
Distmult 0.7464 0.6291 0.8510 0.8985 0.9284
Distmult (Injection) 0.7448 0.6278 0.8510 0.8964 0.9260
TransComplEx 0.7912 0.6987 0.8685 0.9084 0.9391
TransComplEx (Injection) 0.7914 0.7035 0.8637 0.9036 0.9376
TransE 0.4238 0.3002 0.4763 0.5607 0.6782
TransE (Injection) 0.4173 0.2935 0.4693 0.5535 0.6680
LogicENN 0.5011 0.3266 0.6083 0.7341 0.8584
LogicENN (Injection) 0.5107 0.3426 0.6075 0.7334 0.8530

Symmetric

RotatE 0.4299 0.0001 0.8373 0.8935 0.9419
RotatE (Injection) 0.4500 0.0000 0.8955 0.9354 0.9623
ComplEx 0.4697 0.0596 0.8656 0.9216 0.9570
ComplEx (Injection) 0.5007 0.0960 0.8958 0.9379 0.9636
Distmult 0.4505 0.0420 0.8366 0.9114 0.9586
Distmult (Injection) 0.4475 0.0385 0.8398 0.9100 0.9570
TransComplEx 0.4211 0.0154 0.7999 0.8694 0.9371
TransComplEx (Injection) 0.4168 0.0061 0.8035 0.8780 0.9386
TransE 0.3275 0.0000 0.5961 0.6919 0.8018
TransE (Injection) 0.3275 0.0000 0.5961 0.6919 0.8018
LogicENN 0.5335 0.3493 0.6541 0.7651 0.8906
LogicENN (Injection) 0.5384 0.3508 0.6637 0.7774 0.8952

Reflexive

RotatE 1.0000 1.0000 1.0000 1.0000 1.0000
RotatE (Injection) 1.0000 1.0000 1.0000 1.0000 1.0000
ComplEx 1.0000 1.0000 1.0000 1.0000 1.0000
ComplEx (Injection) 1.0000 1.0000 1.0000 1.0000 1.0000
Distmult 1.0000 1.0000 1.0000 1.0000 1.0000
Distmult (Injection) 1.0000 1.0000 1.0000 1.0000 1.0000
TransComplEx 0.9943 0.9886 1.0000 1.0000 1.0000
TransComplEx (Injection) 0.9972 0.9943 1.0000 1.0000 1.0000
TransE 1.0000 1.0000 1.0000 1.0000 1.0000
TransE (Injection) 1.0000 1.0000 1.0000 1.0000 1.0000
LogicENN 0.9260 0.8807 0.9631 0.9801 0.9943
LogicENN (Injection) 0.9256 0.8864 0.9545 0.9858 0.9943

Table 6.10: Evaluation of rule injected model versus no rule injected model
on FB15k dataset on test set consisting specific patterns
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Test Pattern Model MRR Hit@1 Hit@3 Hit@5 Hit@10

Implication

RotatE 0.1935 0.0310 0.2610 0.4212 0.5646
RotatE (Injection) 0.1906 0.0271 0.2636 0.4199 0.5646
ComplEx 0.1333 0.0116 0.1550 0.3023 0.4393
ComplEx (Injection) 0.1369 0.0103 0.1705 0.3217 0.4522
Distmult 0.1638 0.0207 0.2028 0.3708 0.5142
Distmult (Injection) 0.1587 0.0181 0.2093 0.3656 0.5142
TransComplEx 0.1856 0.0310 0.2481 0.3837 0.5401
TransComplEx (Injection) 0.1892 0.0336 0.2558 0.3902 0.5297
TransE 0.1927 0.0362 0.2532 0.3824 0.5491
TransE (Injection) 0.1764 0.0271 0.2481 0.3643 0.5090
LogicENN 0.1642 0.0568 0.1848 0.2907 0.4070
LogicENN (Injection) 0.1273 0.0181 0.1525 0.2623 0.3734

Inverse

RotatE 0.2233 0.0217 0.3105 0.5253 0.6986
RotatE (Injection) 0.2205 0.0181 0.3069 0.5271 0.7148
ComplEx 0.1795 0.0181 0.2112 0.4097 0.6011
ComplEx (Injection) 0.1861 0.0162 0.2365 0.4440 0.6209
Distmult 0.2217 0.0289 0.2816 0.5000 0.6968
Distmult (Injection) 0.2020 0.0144 0.2708 0.4928 0.6787
TransComplEx 0.2141 0.0199 0.3014 0.4801 0.6733
TransComplEx (Injection) 0.2194 0.0235 0.3051 0.4874 0.6570
TransE 0.2123 0.0199 0.2906 0.4567 0.6643
TransE (Injection) 0.1978 0.0162 0.2888 0.4350 0.6282
LogicENN 0.2052 0.0650 0.2365 0.3827 0.5361
LogicENN (Injection) 0.1713 0.0271 0.2112 0.3556 0.5054

Symmetric

RotatE 0.1819 0.0000 0.2435 0.4383 0.6153
RotatE (Injection) 0.1874 0.0000 0.2549 0.4513 0.6347
ComplEx 0.1419 0.0000 0.1623 0.3409 0.5097
ComplEx (Injection) 0.1511 0.0032 0.1883 0.3718 0.5195
Distmult 0.1758 0.0032 0.2224 0.4091 0.5893
Distmult (Injection) 0.1662 0.0000 0.2175 0.4140 0.5795
TransComplEx 0.1786 0.0016 0.2451 0.3994 0.5990
TransComplEx (Injection) 0.1877 0.0000 0.2679 0.4318 0.5974
TransE 0.1707 0.0000 0.2273 0.3701 0.5601
TransE (Injection) 0.1639 0.0000 0.2289 0.3588 0.5519
LogicENN 0.1753 0.0487 0.1948 0.3247 0.4708
LogicENN (Injection) 0.1465 0.0162 0.1672 0.3003 0.4481

Reflexive

RotatE 1.0000 1.0000 1.0000 1.0000 1.0000
RotatE (Injection) 1.0000 1.0000 1.0000 1.0000 1.0000
ComplEx 1.0000 1.0000 1.0000 1.0000 1.0000
ComplEx (Injection) 1.0000 1.0000 1.0000 1.0000 1.0000
Distmult 0.9737 0.9730 0.9730 0.9730 0.9730
Distmult (Injection) 1.0000 1.0000 1.0000 1.0000 1.0000
TransComplEx 0.9943 0.9886 1.0000 1.0000 1.0000
TransComplEx (Injection) 0.9972 0.9943 1.0000 1.0000 1.0000
TransE 1.0000 1.0000 1.0000 1.0000 1.0000
TransE (Injection) 1.0000 1.0000 1.0000 1.0000 1.0000
LogicENN 0.7732 0.7027 0.8108 0.8446 0.9054
LogicENN (Injection) 0.9077 0.8514 0.9527 0.9730 0.9730

Table 6.11: Evaluation of rule injected model versus no rule injected model
on FB15k-237 dataset on test set consisting specific patterns
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Test Pattern Model MRR Hit@1 Hit@3 Hit@5 Hit@10

Implication

RotatE 0.9568 0.9531 0.9593 0.9610 0.9635
RotatE (Injection) 0.9568 0.9527 0.9597 0.9615 0.9652
ComplEx 0.9502 0.9493 0.9508 0.9511 0.9513
ComplEx (Injection) 0.9506 0.9493 0.9510 0.9521 0.9533
Distmult 0.8074 0.6879 0.9232 0.9382 0.9500
Distmult (Injection) 0.8171 0.7062 0.9240 0.9390 0.9508
TransComplEx 0.7439 0.6144 0.8587 0.9149 0.9508
TransComplEx (Injection) 0.6091 0.4313 0.7619 0.8703 0.9342
TransE 0.4291 0.0003 0.8528 0.9225 0.9508
TransE (Injection) 0.4113 0.0000 0.8153 0.9101 0.9480
LogicENN 0.8722 0.8338 0.9045 0.9168 0.9288
LogicENN (Injection) 0.9156 0.8859 0.9447 0.9501 0.9523

Inverse

RotatE 0.9546 0.9505 0.9573 0.9582 0.9609
RotatE (Injection) 0.9545 0.9509 0.9562 0.9580 0.9624
ComplEx 0.9492 0.9484 0.9494 0.9498 0.9505
ComplEx (Injection) 0.9495 0.9481 0.9499 0.9513 0.9524
Distmult 0.7393 0.5645 0.9093 0.9298 0.9471
Distmult (Injection) 0.7514 0.5883 0.9091 0.9300 0.9466
TransComplEx 0.7895 0.6859 0.8814 0.9275 0.9535
TransComplEx (Injection) 0.7296 0.6054 0.8389 0.8986 0.9405
TransE 0.4474 0.0034 0.8912 0.9341 0.9516
TransE (Injection) 0.4380 0.0047 0.8717 0.9281 0.9507
LogicENN 0.8732 0.8348 0.9072 0.9187 0.9300
LogicENN (Injection) 0.9394 0.9315 0.9466 0.9484 0.9496

Symmetric

RotatE 0.9374 0.9316 0.9410 0.9453 0.9491
RotatE (Injection) 0.9380 0.9307 0.9444 0.9474 0.9517
ComplEx 0.9330 0.9307 0.9346 0.9350 0.9358
ComplEx (Injection) 0.9325 0.9299 0.9341 0.9350 0.9376
Distmult 0.9328 0.9277 0.9363 0.9371 0.9393
Distmult (Injection) 0.9353 0.9303 0.9384 0.9410 0.9440
TransComplEx 0.6589 0.4919 0.8058 0.8781 0.9290
TransComplEx (Injection) 0.3566 0.0804 0.5843 0.7913 0.8995
TransE 0.3862 0.0000 0.7536 0.8832 0.9354
TransE (Injection) 0.3552 0.0000 0.6856 0.8589 0.9286
LogicENN 0.8482 0.8041 0.8841 0.8978 0.9136
LogicENN (Injection) 0.8432 0.7630 0.9226 0.9371 0.9414

Reflexive

RotatE 0.9526 0.9483 0.9553 0.9586 0.9618
RotatE (Injection) 0.9537 0.9479 0.9590 0.9609 0.9646
ComplEx 0.9478 0.9460 0.9493 0.9497 0.9497
ComplEx (Injection) 0.9479 0.9460 0.9493 0.9497 0.9511
Distmult 0.9484 0.9465 0.9488 0.9497 0.9516
Distmult (Injection) 0.9505 0.9479 0.9516 0.9544 0.9567
TransComplEx 0.6731 0.5079 0.8175 0.8873 0.9409
TransComplEx (Injection) 0.3621 0.0000 0.6997 0.8696 0.9385
TransE 0.3947 0.0000 0.7733 0.8957 0.9455
TransE (Injection) 0.3621 0.0000 0.6997 0.8696 0.9385
LogicENN 0.8640 0.8226 0.8971 0.9101 0.9250
LogicENN (Injection) 0.8555 0.7751 0.9353 0.9497 0.9539

Table 6.12: Evaluation of rule injected model versus no rule injected model
on WN18 dataset on test set consisting specific patterns
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6.3 Trained Embedding Visualization

In this section, the visualization of trained embedding is demonstrated. This
section aims to explain how similar entities are overlapped or separated in the
lower-dimensional projection of embedding vectors. The process of visualizing
those embedding vectors are briefly described in section 3.7 of chapter 3. T-
SNE has been used to project the higher dimensional embedding vectors to a
lower one. In the following images, the type of embedding to be visualized are:
/organization/endowed_organization, /film/film, /tv/tv_program,
/music/instrument, /location/statistical_region, and /music/group_member.

Hyperparameters are specified for TSNE. The perplexity and number of the it-
eration are set to 50 and 1000. For initializing T-SNE scikit-learn’s [9] standard
TSNE library1 has been used. For visualization, Seaborn [63] library has been
utilized and used. Figure 6.1, provides an illustration of untrained embedding,
which means these corresponding entities are not trained, just vector values are
randomly initialized for each corresponding types as the embedding space is ran-
domly initialized for KGE models at the beginning of the training process. The
separation of the embedding vectors of corresponding types can not be observed
in this figure.

Figure 6.1: Embedding visualization of untrained embedding

Figure 6.2 and 6.3 illustrates the embedding vectors after 50 iteration of training
for RotatE (both with rule injection and no rule injection). It appears that not
much of a difference can be visualized for both of the models. If there was a

1https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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very low accuracy before or after injecting rules, then both images could have
been very different as types would not be separated very well, or similar types of
entities would not be clustered for poorly trained embedding.

Figure 6.2: Rule injected trained embedding visualization of RotatE

Figure 6.3: No Rule injected trained embedding visualization of RotatE

Now in a separate scenario is considered in another figure which is illustrated in
figure 7.1 in Appendix, where a separate class people/person has been taken as
one of the indicated types, in order to show this type can potentially overlap with
/music/group_member since both of the categories can be considered similar.
This figure clarifies that similar types of trained embeddings can overlap since their
embedding vectors are similar. It ensures the training of the entity embedding is
meaningful.



Chapter 7

Conclusion and Future work

In this thesis, a rule injection system RULECT has been developed where three
different modules exist for separate tasks: extraction of rules from general RDF
knowledge graph datasets, preprocessing of the required data and training of
knowledge graph embedding models with the rule injection process. Focusing
on several problems were acting as key factors in this thesis. Firstly, to know
about how an embedding model reacts when rule injection has been performed,
especially in terms of performance. Secondly, leakages might exist in the test
set in popular KGs, which may essentially make the link prediction task easier
than expected. To find out relevant answers, leakages have been removed from
the test sets of mentioned Knowledge Graphs. Same trained KGE models (which
is used to identify of rule injection effect over KGE models on regular test sets)
is utilized make an inference on leakage-free test set. Thirdly, it is known that
embedding models are capable of learning implication, inverse, symmetric and
reflexive patterns from training sets. One important part is identifying whether
rule injection makes the training more effective so that the same trained models
on test sets containing such patterns show performance increase in case of rule
injection. For training and evaluation, six training models: RotatE, ComplEx,
Distmult, TransComplEx, TransE, and LogicENN are integrated in the system in
such a way that groundings can be injected while training of those models. After
successful training, these models can be saved to perform inference on different
test sets.

79
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7.1 Conclusion and Discussion

Three key research questions are addressed at the beginning of this thesis. To
draw out and briefly discuss the conclusions, those research questions are repeated
here again.

Research Question 1: Can we leverage injection of logical rules in the
KGEmodels towards increasing their performance?

To answer this research question, a brief investigation has been done on several
datasets; namely, RotatE, TransComplEx, ComplEx, Distmult, TransE, and Log-
icENN on both rule injected and no rule injected model. It is already mentioned
that, rules are injected in the form of groundings. For each embedding model, to
perform fair analysis, the same hyperparameter settings have been considered for
the rule injected, and no rule injected model. It has been observed that, in most
of the cases, rule injected model performs better than no rule injected embedding
models, especially RotatE performs very well on almost every dataset if rules are
injected while training. This effect can be clearly seen in FB15k dataset after rule
injection in RotatE model from table 6.1 in section 6.2.1 of chapter 6. This sub-
section (subsection 6.2.1 from chapter 6) also depicts that other models are also
performing well if rules are injected in most of the cases with the only exception
of FB15k-237. From table 4.1 in chapter 4, it can be seen that, for FB15k-237,
no leakages exists in the test set. At this point, another research question arises,
which is also repeated as follows:

Research Question 2: What can be the effect of rule injection in KGE models
for leakage-free test set?

To get a clear answer to this one, the same KGE models trained for the first
research question have been used. Only the test sets were replaced by refined
test versions of the original. Preparation of such test sets is briefly discussed in
section 4.4 of chapter 4. It has been observed that the same KGE models which
were trained previously are performing worse than it performed on the original
test set and rule injection merely helped the models to have better performance
on leakage-free test sets. Though it can be seen that, some KGE models slightly
performed better across the performance metrics if rules are injected in this case
(this can be seen in subsection 6.2.2 of section 6.2 at chapter 6). In many cases,
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rule injection has significant effects if the test sets have leakages (FB15k and
WN18 have significant amount of leakages); that might be a potential cause of the
significant or slight improvement in performance which has been observed after
injection. The third research question is to identify the effect of rule injection if
only mentioned patterns are kept in the test set.

Research Question 3: Can rule injection be helpful when only specific
patterns appear in the test set?

To analyze this research question, test sets considering only implication, inverse,
symmetric and reflexive patterns have been taken. Other triples are filtered out
from the test set. The same trained embedding models have been used which are
used for the analysis of previous research questions. It turns out that rule injection
helped in order to identify those patterns. The evaluation results of FB15k and
WN18 from subsection 6.2.3 clearly demonstrate the effects of rule injection on
such patterns.

7.2 Future Work

The future direction of this research has the potential to take several pathways.
For the rule extraction part, AMIE+ [15] is used for mining rules from KGs. Later
from these rules, groundings are generated. This research’s future direction can
lead to the development of another standalone rule mining system, where logical
rules are dynamically generated while training in a batch wise manner instead of
fetching them before training. From those rules, groundings can be also generated
and injected in runtime. In this way, the rule injection system can be more robust
and efficient per batch of training data. Though it is a question of computational
capabilities for KGE model’s training, it is to be seen in the future. In this re-
search, only four logical rules are considered for injection: implication, inverse,
symmetric, and equivalence. There is a plan to work with other logical rules such
as transitive, composition, asymmetric as well. In terms of the development of
RULECT system, the plan is to make it more automated, robust and user inter-
action oriented. Also, enriching the system with more recent embedding models is
a potential plan. In conclusion, this research carved a pathway for leveraging rule
injection and their effects in KGE models, which may potentially lead the area of
link prediction to the next level.
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Appendix

Test Pattern Model MRR Hit@1 Hit@3 Hit@5 Hit@10

Inverse

RotatE 0.8085 0.7016 0.8918 0.9443 0.9689
RotatE (Injection) 0.8180 0.7295 0.8934 0.9344 0.9672
ComplEx 0.7656 0.6475 0.8787 0.9262 0.9607
ComplEx (Injection) 0.7666 0.6459 0.8672 0.9197 0.9590
Distmult 0.2347 0.0967 0.2033 0.3508 0.6574
Distmult (Injection) 0.2404 0.0902 0.2295 0.3689 0.6836
TransComplEx 0.5630 0.3820 0.6770 0.8164 0.9246
TransComplEx (Injection) 0.5367 0.3426 0.6656 0.8066 0.9361
TransE 0.3149 0.0246 0.5246 0.6984 0.8377
TransE (Injection) 0.3133 0.0131 0.5311 0.7148 0.8590
LogicENN 0.8382 0.7525 0.9115 0.9426 0.9705
LogicENN (Injection) 0.8611 0.7918 0.9213 0.9459 0.9689

Symmetric

RotatE 0.8481 0.7409 0.9562 0.9818 0.9927
RotatE (Injection) 0.8513 0.7518 0.9526 0.9818 1.0000
ComplEx 0.7488 0.6095 0.8686 0.9453 0.9745
ComplEx (Injection) 0.7844 0.6569 0.9161 0.9453 0.9854
Distmult 0.8204 0.7080 0.9234 0.9635 0.9927
Distmult (Injection) 0.8364 0.7263 0.9489 0.9781 0.9964
TransComplEx 0.5002 0.2956 0.6022 0.7883 0.9489
TransComplEx (Injection) 0.5558 0.3540 0.6825 0.8321 0.9599
TransE 0.1358 0.0000 0.1058 0.2117 0.4964
TransE (Injection) 0.1562 0.0000 0.1752 0.2737 .5073
LogicENN 0.8881 0.8029 0.9781 0.9854 0.9964
LogicENN (Injection) 0.8659 0.7737 0.9453 0.9854 1.0000

Table 7.1: Evaluation of rule injected model versus no rule injected model on
Kinship dataset on test set consisting specific patterns
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Test Pattern Model MRR Hit@1 Hit@3 Hit@5 Hit@10

Implication

RotatE 0.9236 0.8678 0.9736 0.9880 0.9952
RotatE (Injection) 0.9196 0.8630 0.9688 0.9976 1.0000
ComplEx 0.5393 0.3389 0.6803 0.7957 0.9423
ComplEx (Injection) 0.5915 0.4087 0.7260 0.8510 0.9423
Distmult 0.3914 0.2476 0.4952 0.5385 0.6466
Distmult (Injection) 0.3918 0.2572 0.4736 0.5240 0.6418
TransComplEx 0.9239 0.8750 0.9688 0.9880 1.0000
TransComplEx (Injection) 0.9236 0.8750 0.9736 0.9880 1.0000
TransE 0.4644 0.0000 0.9231 0.9832 0.9976
TransE (Injection) 0.4627 0.0000 0.9062 0.9736 0.9976
LogicENN 0.9232 0.8726 0.9760 0.9856 0.9928
LogicENN (Injection) 0.9312 0.8894 0.9712 0.9808 0.9952

Inverse

RotatE 0.9236 0.8678 0.9736 0.9880 0.9952
RotatE (Injection) 0.9196 0.8630 0.9688 0.9976 1.0000
ComplEx 0.5393 0.3389 0.6803 0.7957 0.9423
ComplEx (Injection) 0.5915 0.4087 0.7260 0.8510 0.9423
Distmult 0.3914 0.2476 0.4952 0.5385 0.6466
Distmult (Injection) 0.3918 0.2572 0.4736 0.5240 0.6418
TransComplEx 0.9239 0.8750 0.9688 0.9880 1.0000
TransComplEx (Injection) 0.9236 0.8750 0.9736 0.9880 1.0000
TransE 0.4644 0.0000 0.9231 0.9832 0.9976
TransE (Injection) 0.4627 0.0000 0.9062 0.9736 0.9976
LogicENN 0.9232 0.8726 0.9760 0.9856 0.9928
LogicENN (Injection) 0.9312 0.8894 0.9712 0.9808 0.9952

Symmetric

RotatE 0.9236 0.8678 0.9736 0.9880 0.9952
RotatE (Injection) 0.9196 0.8630 0.9688 0.9976 1.0000
ComplEx 0.5393 0.3389 0.6803 0.7957 0.9423
ComplEx (Injection) 0.5915 0.4087 0.7260 0.8510 0.9423
Distmult 0.3914 0.2476 0.4952 0.5385 0.6466
Distmult (Injection) 0.3918 0.2572 0.4736 0.5240 0.6418
TransComplEx 0.9239 0.8750 0.9688 0.9880 1.0000
TransComplEx (Injection) 0.9236 0.8750 0.9736 0.9880 1.0000
TransE 0.4644 0.0000 0.9231 0.9832 0.9976
TransE (Injection) 0.4627 0.0000 0.9062 0.9736 0.9976
LogicENN 0.9232 0.8726 0.9760 0.9856 0.9928
LogicENN (Injection) 0.9312 0.8894 0.9712 0.9808 0.9952

Table 7.2: Evaluation of rule injected model versus no rule injected model on
UMLS dataset on test set consisting specific patterns

Figure 7.1: Embedding visualization of trained embedding(RotatE) for over-
lapping classes
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