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Abstract. Scientific knowledge has been traditionally disseminated and
preserved through research articles published in journals, conference pro-
ceedings, and online archives. However, this article-centric paradigm has
been often criticized for not allowing to automatically process, catego-
rize, and reason on this knowledge. An alternative vision is to generate
a semantically rich and interlinked description of the content of research
publications. In this paper, we present the Artificial Intelligence Knowl-
edge Graph (AI-KG), a large-scale automatically generated knowledge
graph that describes 820K research entities. AI-KG includes about 14M
RDF triples and 1.2M reified statements extracted from 333K research
publications in the field of AI, and describes 5 types of entities (tasks,
methods, metrics, materials, others) linked by 27 relations. AI-KG has
been designed to support a variety of intelligent services for analyzing
and making sense of research dynamics, supporting researchers in their
daily job, and helping to inform decision-making in funding bodies and
research policymakers. AI-KG has been generated by applying an auto-
matic pipeline that extracts entities and relationships using three tools:
DyGIE++, Stanford CoreNLP, and the CSO Classifier. It then integrates
and filters the resulting triples using a combination of deep learning
and semantic technologies in order to produce a high-quality knowledge
graph. This pipeline was evaluated on a manually crafted gold standard,
yielding competitive results. AI-KG is available under CC BY 4.0 and
can be downloaded as a dump or queried via a SPARQL endpoint.
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1 Introduction

Scientific knowledge has been traditionally disseminated and preserved through
research articles published in journals, conference proceedings, and online archives.
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These documents, typically available as PDF, lack an explicit machine-readable
representation of the research work. Therefore, this article-centric paradigm has
been criticized for not allowing to automatically process, categorize, and rea-
son on this knowledge [13]. In recent years, these limitations have been further
exposed by the increasing number of publications [6], the growing role of inter-
disciplinary research, and the reproducibility crisis [20].

An alternative vision, that is gaining traction in the last few years, is to
generate a semantically rich and interlinked description of the content of research
publications [13,29,7,24]. Integrating this data would ultimately allow us to
produce large scale knowledge graphs describing the state of the art in a field and
all the relevant entities, e.g., tasks, methods, metrics, materials, experiments, and
so on. This knowledge base could enable a large variety of intelligent services for
analyzing and making sense of research dynamics, supporting researchers in their
daily job, and informing decision-making in funding bodies and governments.

The research community has been working for several years on different solu-
tions to enable a machine-readable representations of research, e.g., by creating
bibliographic repositories in the Linked Data Cloud [19], generating knowledge
bases of biological data [5], encouraging the Semantic Publishing paradigm [27],
formalising research workflows [31], implementing systems for managing nano-
publications [14] and micropublications [26], , automatically annotating research
publications [24], developing a variety of ontologies to describe scholarly data,
e.g., SWRCS, BIBO”, BiDO®, SPAR [21], CSO? [25], and generating large-scale
knowledge graphs, e.g., OpenCitation'?, Open Academic Graph!'!, Open Re-
search Knowledge Graph!? [13], Academia/Industry DynAmics (AIDA) Knowl-
edge Graph'3 [3]. Most knowledge graphs in the scholarly domain typically con-
tain metadata describing entities, such as authors, venues, organizations, re-
search topics, and citations. Very few of them [26,12,14,13] actually include
explicit representation of the knowledge presented in the research papers. A re-
cent example is the Open Research Knowledge Graph [13] that also offers a
web interface for annotating and navigating research papers. Typically, these
knowledge graphs are populated either by human experts [14,13] or by auto-
matic pipelines based on Natural Language Processing (NLP) and Information
Extraction (IE) [23,16]. The first solution usually produces an high-quality out-
come, but suffers from limited scalability. Conversely, the latter is able to process
very large corpora of publications, but may yield a noisier outcome.

The recent advancements in deep learning architectures have fostered the
emergence of several excellent tools that extract information from research pub-
lications with a fair accuracy [4,11, 18, 16]. However, integrating the output of

5 http://ontoware.org/swrc
" http://bibliontology.com
8 http://purl.org/spar/bido
9 http://cso.kmi.open.ac.uk
10 https://opencitations.net/
Y https://www.openacademic.ai/oag/
12 https://wuw.orkg. org/orkg/
3 http://w3id.org/aida/
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these tools in a coherent and comprehensive knowledge graph is still an open
challenge.

In this paper, we present the Artificial Intelligence Knowledge Graph (Al-
KG), a large-scale automatically generated knowledge graph that describes 820K
research entities in the field of AI. AI-KG includes about 14M RDF triples and
1.2M reified statements extracted from 333K research publications in the field
of AT and describes 5 types of entities (research topics, tasks, methods, metrics,
materials) linked by 27 relations. Each statement is also associated to the set of
publications it was extracted from and the tools that allowed its detection.

AT-KG was generated by applying an automatic pipeline [9] on a corpus of
publications extracted from the Microsoft Academic Graph (MAG). This ap-
proach extracts entities and relationships using three state of the art tools: Dy-
GIE++ [30], the CSO Classifier [23], and Stanford CoreNLP [2,17]. It then
integrates similar entities and relationships and filters contradicting or noisy
triples. AI-KG is available online'* and can be queried via a Virtuoso triple-
store or downloaded as a dump. We plan to release a new version of AI-KG
every six months, in order to include new entities and relationships from recent
publications.

The remainder of this paper is organized as follows. Section 2 discusses the
related work, pointing out the existing gaps. Section 3 describes AI-KG, the
pipeline used for its generation, and our plan for releasing new versions. Section 4
reports the evaluation. Finally, Section 5 concludes the paper, discusses the
limitations, and defines future directions of research where we are headed.

2 Related Work

Due to its importance in the automatic and semi-automatic building and main-
tenance of Knowledge Bases, the area of Information Extraction (IE) comprises
a large body of work, which includes a variety of methods for harvesting enti-
ties and relationships from text. In many of the proposed solutions, IE relies
on Part-Of-Speech (PoS) tagging and various type of patterns, morphological or
syntactical [28,22], often complementing themselves to compensate for reduced
coverage. The most recent approaches exploit various resources to develop ensem-
ble methodologies [18]. If we consider IE as the combination of two main tasks,
extracting entities and identifying relations from text, the latter has proven
without doubt the most challenging. The most successful models for relation
extraction are either based on knowledge or supervised and, therefore, depend
on large annotated datasets, which are rare and costly to produce. Among the
knowledge-based ones, it is worth to cite FRED'?, a machine reader developed
by [11] on top of Boxer [8]. However, these tools are built for open-domain ex-
traction and do not usually performs well on research publications that typically
use scientific jargon and domain-dependent terms.

For a number of years, researchers have targeted scientific publications as a
challenge domain, from which to extract structured information. The extraction

" http://wdid.org/aikg
!5 http://wit.istc.cnr.it/stlab-tools/fred/
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of relations from scientific papers has recently raised interest among the NLP re-
search community, thanks also to challenges such as SemEval 2017, sciencelE'6
and SemEval 2018 Task 7 Semantic Relation FExtraction and Classification in
Scientific Papers [10], where participants tackled the problem of detecting and
classifying domain-specific semantic relations. Since then, extraction methodolo-
gies for the purpose of building knowledge graphs from scientific papers started
to spread in the literature [15]. For example, authors in [1] employed syntactical
patterns to detect entities, and defined two types of relations that may exist
between two entities (i.e., hyponymy and attributes) by defining rules on noun
phrases. Another attempt to build scientific knowledge graphs from scholarly
data was performed by [16], as an evolution of the authors’ work at SemEval
2018 Task 7. First, authors proposed a Deep Learning approach to extract en-
tities and relations from the scientific literature; then, they used the retrieved
triples for building a knowledge graph on a dataset of 110,000 papers. How-
ever, they only used a set of six predefined relations, which might be too generic
for the purpose of yielding insights from the research landscape. Conversely, we
also detected frequent verbs used on research articles and mapped them to 27
semantic relations, making our results more precise and fine-grained.

3 AI-KG

3.1 AI-KG Overview

The Artificial Intelligence Knowledge Graph (AI-KG) includes about 14M RDF
triples and describes a set of 1.2M statements and 820K entities extracted from
a collection of 333,609 publications in Artificial Intelligence (AI) in the period
1989-2018. In order to interlink AI-KG with other well-known knowledge bases,
we also generated 19,704 owl:sameAs relationships with Wikidata and 6,481 with
CSO. The current version of AI-KG was generated and will be regularly updated
through an automatic pipeline that integrates and enriches data from Microsoft
Academic Graph, the Computer Science Ontology (CSO), and Wikidata.

The AI-KG ontology is available online!” and builds on SKOS'#, PROV-O'?,
and OWL?°. Each statement in AI-KG is associated with a triple describing the
relationship between two entities and a number of relevant metadata. Specifi-
cally, a statement is described by the following relationships:

— rdf:subject, rdf:predicate, and rdf:object, which provide the statement in stan-
dard triple form;

— atkg-ont:hasSupport, which reports the number of publications the statement
was derived from,;

16 https://scienceie.github.io/

" http://w3id.org/aikg/aikg/ontology
18 https://wuw.w3.org/2004/02/skos/
19 https://www.w3.org/TR/prov-o/

20 nttps://www.w3.org/0WL/
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— PROV-O:wasDerivedFrom, which provides provenance information and lists
the IDs of the publications from which the statement was extracted;

— PROV-O:wasGenerated By, which provides provenance and versioning infor-
mation, listing (i) the tools used to detect the relationship, and (ii) the
version of the pipeline that was used;

— aikg-ont:isInverse, which signals if the statement was created by inferring
the inverse of a relationship extracted from the text.

— atkg-ont:isInferred By Transitivity, which signals if the statement was inferred
by other statements (i.e., via transitive closure).

An example of an AI-KG statement is shown in the following:
aikg:statement_110533 a aikg-ont:Statement, provo:Entity ;
aikg-ont:hasSupport 4 ;
aikg-ont:isInferredByTransitivity false ;
aikg-ont:isInverse false ;
rdf:subject aikg:learning_algorithm ;
rdf :predicate aikg-ont:usesMethod ;
rdf:object aikg:gradient_descent ;
provo:wasDerivedFrom aikg:1517004310,

aikg:1973720487,
aikg:1996503769,
aikg:2085159862 ;
provo:wasGeneratedBy aikg:DyGIE++,
aikg:0penlE,
aikg:pipeline_V1.2 .

The example illustrates the statement <learning algorithm, usesMethod,
gradient_descent> and all its relevant information. It declares that this state-
ment was extracted from four publications (using aikg-ont:hasSupport) and gives
the IDs for these publications (using provo:wasDerivedEFrom).

It also uses provo: wasGeneratedBy to declare the specific tools that were
used to identify the statement, and which version of our pipeline was used to
process it.

The AI-KG ontology describes five types of research entities (Method, Task,
Material, Metric, OtherEntity). We focused on those types since they are already
supported by several information extraction tools [16] and benchmarks [10].

The relations between the instances of these types were instead crafted
analysing the main predicates and triples returned by several tools. We se-
lected the most frequent predicates extracted by NLP tools and generated a
set of candidate relations by combining them with the five supported enti-
ties. For example, the predicate uses was used to produce usesMethod, uses-
Task, usesMaterial, usesMetric, usesOtherEntity. The is a predicate was instead
mapped to the skos:broader relation, e.g., <neural network , skos:broader,
machine learning technique>. This draft was revised in subsequent iterations
by four domain experts, who eventually selected 27 relations derived from 9 ba-
sic verbs (uses, includes, is, evaluates, provides, supports, improves, requires, and
predicts) and defined their characteristics, such as domain, range, and transitive-
ness. Defining the correct domain for each relationship also enabled us to filter
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many invalid statements returned by the original tools as discussed in Section 3.3.
AI-KG is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). It can be downloaded as a dump at http://w3id.org/aikg/
and queried via a Virtuoso triplestore at http://w3id.org/aikg/sparql/.

In the following subsection, we will discuss the automatic generation of Al-
KG triples (Sect. 3.2), how it was assembled (Sect. 3.3), and describe it in more
details (Sect. 3.4).

3.2 Research Entities and Relations Extraction

This section illustrates the pipeline for extracting entities and relationships from
research papers and generating AI-KG. Figure 1 shows the architecture of the
pipeline. This approach first detects sub-strings that refer to research entities,
links them by using both pre-defined and verb-based relations, and generates
three disjoint sets of triples. Then, it applies NLP techniques to remove too
generic entities (e.g., “approach”, “algorithm”) and cleans unusual characters
(e.g., hyphens used in text to start a new row). Finally, it merges together triples
that have the same subject and object and uses a manually crafted dictionary
to generate their relationships.

Relations Handler —

Papers

- r

Entities Handler

Triples Valid
- .
? Selector Triples

StanfordCoreNLP

DE e OpenlE - PoS Tagger

CSo

Extractors

Fig. 1. Schema of our pipeline to extract and handle entities and relations.

Description of Employed Tools and Methods. The following tools were
used to extract research entities and their relations:

— DyGIE++ [30] designed by Wadden et al. was used to perform the first
parsing of the input scientific data. It is a framework which exploits BERT
embeddings into a neural network model to analyze scientific text. The Dy-
GIE++ framework extracts six types of research entities Task, Method, Met-
ric, Material, Other-Scientific-Term, and Generic and seven types of rela-
tions (i.e., Compare, Part-of, Conjunction, Fvaluate-for, Feature-of, Used-
for, Hyponym-Of). For the purpose of this work, we discarded all the triples
with relation Conjunction and Generic, since they did not carry sufficient se-
mantic information. DyGIE++ exploits a feed-forward neural network that
is applied on span representations of the input texts to compute two scores vy
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and v9, which measure the probability of span representations to be research
entities or relations within the predefined types.

— The CSO Classifier?* [23], is a tool built on top of the Computer Science On-
tology, an automatically generated ontology of research areas in the field of
Computer Science [25]. It identifies topics by means of two different compo-
nents, the syntactic module and the semantic module. The syntactic module
adopts syntactical rules in order to detect topics in the text. In particular,
on unigrams, bigrams, and trigrams computed on text, it applies the Leven-
shtein similarity with the labels of the topics in CSO. If the similarity meets
a given threshold the n-gram is recognized as research topic. The semantic
module exploits the knowledge contained in a Word2Vec model trained on a
corpus of scientific papers and a regular expression on PoS tags of the input
text to map n-grams to research topics.

— The Open Information Extraction (OpenlE) [2] is an annotator provided by
the Stanford Core NLP suite. It extracts general entities and relations from
a plain text. It detects groups of words (clauses) where there are at least
a subject and a verb by exploring a parsing tree of its input. First, clauses
that hold this syntactic structure are built. Then, it adopts a multinomial
logistic regression classifier to recursively explore the dependency tree of
sentences from governor to dependant nodes. The natural logic of clauses is
captured by exploiting semantic dictating contexts and, finally, long clauses
are segmented into triples. In order to detect only triples that are related to
research entities, we removed all OpenlE triples where the string of detected
entities did not overlap with the string of the research entities previously
found by DyGIE++ and CSO classifier.

— PoS Tagger of Stanford Core NLP?? which annotates PoS tags of an input
text. The PoS tags were used to detect all verbs that might represent a
relation between two research entities. More precisely, for each sentence s;
we held all the verbs V' = {vy, ..., v} between each pair of research entities
(ems €n) to create triples in the form <e,,, v, e,> where v € V.

From each abstract a; of the input Al papers, the pipeline extracted entities
FE; and relations R;. More specifically, these sets were firstly extracted by using
the DyGIE++ tool?3. Then, E; was expanded by using all research topics that
were found by the CSO classifier. Subsequently, OpenlE was applied to parse
the text, and all triples in the form < subject, verb, object > with both subject
and object that overlap research entities in F; were added to R;. The set R;
was finally expanded by using all triples built by exploiting the PoS tagger. The
reader notices that between two entities different relations might be detected by
the origin tools, therefore, two entities within AI-KG can be at most linked by
3 different relations.

Handling of Research Entities. Research entities extracted from plain text
can contain very generic nouns, noisy elements, and wrong representations due

2! https://github.com/angelosalatino/cso-classifier
22 https://nlp.stanford.edu/software/tagger. shtml
23 We thank NVIDIA Corp. for the donation of 1 Titan Xp GPU used in this research.
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to mistakes in the extraction process. In addition, different text representations
might refer to the same research entity. To prevent some of these issues, our
approach performed the following steps. First, it cleaned entities from punctu-
ation signs (e.g., hyphens and apostrophes) and stop-words. Then, it exploited
a manually built blacklist of entities to filter out ambiguous entities, such as
“learning”. Then, it applied simple rules to split strings that contained more
than one research entity. For example, a research entity like machine learning
and data mining was split in machine learning and data mining. Subsequently,
acronyms were detected and solved within the same abstract by exploiting the
fact that they usually appear in brackets next to the extended form of the related
entities e.g., Support Vector Machine (SVM).

In order to discard generic entities (e.g., approach, method, time, paper), we
exploited the Information Content (IC) score computed on our entities by means
of the NLTK?* library, and a white-list of entities that had to be preserved.
Specifically, our white-list was composed by all CSO topics and all keywords
coming from our input research papers. Our pipeline discarded all entities that
were not in the white-list and that had a IC equal or lower than an empirically
and manually defined threshold of 15.

Finally, we merged singular and plural forms of the same entities to avoid that
many resulting triples expressed the same information. We transformed plural
entities in their singular form using the Wordnet lemmatizer and merged entities
that refer to the same research topic (e.g., ontology alignment and ontology
matching) according to the relevantEquivalent relation in CSO.

Handling of Relations. In this section, we describe how the pipeline identified
specific relations between entities.

Best relations selector. Our relations can be divided in three subsets i) Rp4:
the set of triples derived by the DyGIE++ framework where relations are pre-
defined ii) Rosp: the set of triples detected by OpenlE where each relation is a
verb, and iii) Rp,s: the set of triples that were built on top of the PoS tagger
results where each relation is a verb.

In order to integrate these triples and identify one relation for each pair of
entities we performed the following operations.

— The set of triples Rpy4 containing predefined relations was modified as
follows. Let LR = [rq,...,ry] the list of relations between a pair of entities
ep, €q such that (e,,7;,e4) € Rpt+. Then, the most frequent relation 7 yeq
was selected as the most frequent relation in LR and used to build the triple
< €p, Tfreq, €q >. The set of triples so built generated the set Tp .

— The set of triples RosE relations was transformed as follows. For each pair of
research entities (ep, eq) all their relations LR = [r1,...,r,] were collected.
For each relation r;, its corresponding word embedding w; was associated
and the list LR,, was built. The word embeddings were built by applying the
Word2Vec algorithm over the titles and abstracts of 4,5M English papers in

24 https://www.nltk.org/howto/wordnet . html
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the field of Computer Science from MAG after replacing spaces with under-
scores in all n-grams matching the CSO topic labels and for frequent bigrams
and trigrams. Then, all word embeddings w; were averaged yielding wq.g,
and by using the cosine similarity the relation r; with word embedding w;
nearest to wq.,y Was chosen as best predicate label. Triples like < e,,7;,e4 >
were used to create the set Torg. The same process was also applied on the
triples Rp,s yielding the set Tp,g.

— Finally, each triple within sets Tpy+, Torg, and Tp,s was associated to the
list of research papers from which they were extracted in order to preserve
the provenance of each statement. Additionally, we refer to the number of re-
search papers as the support, which is a confidence value about the consensus
of the research community over that specific triple.

Relations mapping. Many triples presented relations that were semantically sim-
ilar, but syntactically different, such as exploit, use, and adopt. Therefore, we
reduced the relation space by building a map M for merging similar relations.
All verb relations in sets Torg and Tp,s were taken into account. We mapped all
verb relations with the corresponding word embeddings and created a hierarchi-
cal clustering by exploiting the algorithm provided by the SciKit-learn library.
The values 1— cosine similarity were used as distance between elements. Then
the silhouette-width measure was used to quantify the quality of the clusters for
various cuts. Through an empirical analysis the dendrogram was cut when the
average silhouette-width was 0.65. In order to remove noisy elements we manu-
ally revised the clusters. Finally, using the clusters we created the map M where
elements of the same cluster were mapped to the cluster centroid. In addition,
M was also manually integrated to map the relations of the set Tpy4 to the
same verb space. The map M was used to transform all relations of triples in
sets TD++, TOIE7 and TPOS-

Triple Selection. In order to preserve only relevant information about the Al
field, we adopted a selection process that labels our triples as valid and not-valid.

Valid Triples. In order to define the set of valid triples we considered which
method was used for the extraction and the number of papers associated to each
triple. In more details, we used the following criteria to consider triples as valid:

— All triples that were extracted by DyGIE++ and OpenlE (i.e., triples of the
sets Tpi4+ and Torg) were considered valid since the quality of results of
those tools has been already proved by their related scientific publications.

— All triples of the set Tp,s that were associated to at least 10 papers with
the goal to hold triples with a fair consensus. We refer to this set as Tp,g.

The set Tyq14 Was hence composed by the union of Tpy 4, Torg, and Tp,g. All
the other triples were temporarily added to the set T_,4:4-
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Consistent triples. Several triples in the set T_,4;;¢ might still contain relevant
information even if they are not well-supported. For their detection, we exploited
the set Tyq:q as good examples to move triples from the set T-,q1iq t0 Tyarid-
More precisely, we designed a classifier v : (ep,eq) — | where (e, €q) is a pair
of research entities and [ is a predicted relation. The idea was that a triple
consistent with T,4;;4 would have its relation correctly guessed by . In more
details the following steps were performed:

— A Multi-Perceptron Classifier (MLP) to guess the relation between a couple
of entities was trained on the T,,;;4 set. The input was made by the concate-
nation of entity word embeddings e, ey, i.e., we,,w,,. The adopted word
embeddings model was the same used to cluster verbs.

— We applied vy on entities for each triple < e,,r,eq >€ T-yq1iq, yielding a
relation 7’. The relations r and r’ were compared. If r = r’ then the triple
< ep,T,€q > was considered consistent and included to T’q1:4. Otherwise we
computed the cosine similarity cos_sim similarity between r and ' word em-
beddings, and the Wu-Palmer wup_sim similarity between r and ' Wordnet
synsets. If the average between cos_sim and wup_sim was higher than the
threshold th = 0.5 then the triple < e,,r, e, > was considered consistent
with T,q1:¢4 and added to this set.

The set Tya1:q after these steps contained 1,493,757 triples.
3.3 AI-KG Generation

In this section, we discuss the generation of AI-KG from the triples of the set
Tyaliqg and describe how it is driven by the AI-KG ontology introduced in Section
3.1. We also report how we materialized several additional statements entailed
by the AI-KG schema using inverse and transitive relations. Finally, we describe
how we mapped AI-KG to Wikidata and CSO.

Ontology-driven Knowledge Graph Generation As discussed in Section
3.1, the most frequent predicates of the set set Tyq;;¢ were given to four do-
main experts associated with several examples of triples. After several iteration,
the domain experts produced a final set of 27 relations and defined their range,
domain, and transitivity. We mapped the relations in Ty4;;4 to those 27 rela-
tions whenever was possible and discarded the inconsistent triples. The latter
included both the triples whose predicate was different from the nine predicates
adopted for the AI-KG ontology or their synonymous and the ones that did not
respect the domain of the relations. For instance, the domain of the relation
“includesTask” does not include the class “Material”, since materials cannot in-
clude tasks. Therefore, all triples stating that a matarial includes a task, such as
<jaffe_face_database, includesTask, face_detection>, were filtered out.
This step generated 1,075,655 statements from the 1,493,757 triples in Tyq1iq-
These statements were then reified using the RDF reification vocabulary?®.
* https://www.w3.org/TR/rdf-mt/#Reif
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Statement Materialization. In order to support users querying AI-KG via
SPARQL and allowing them to quickly retrieve all information about a specific
entity, we decided to also materialize some of the statements that could be
inferred using transitive and inverse relations. Since we wanted for the resulting
statements to have a minimum consensus, we computed the transitive closure
of all the statements extracted by at least two research articles. This resulted in
additional 84,510 inferred statements.

We also materialized the inverse of each statement, e.g., given the statement
<sentiment_analysis, usesMaterial, twitter> we materialized the statement
<twitter, materialUsedBy, sentiment_analysis>. The final version of the KG,
including all the inverse statements, counts 27,142,873 RDF triples and 2,235,820
reified statements.

Integration with other Knowledge Graphs. We mapped the entities in
AI-KG to Wikidata, a well-known knowledge base containing more than 85M
of data items, and to CSO. In particular, each entity in AI-KG was searched
in Wikidata and, when there was just one corresponding valid Wikidata entry,
we generated a owl:sameAs relation between the two entities. The analysis of
the correct mapping and the problem of the correct identification of multiple
Wikidata entries for a given entity are considered future works as beyond the
scope of this paper. Overall, we found 19,704 of such entities. Similarly, we
mapped 6,481 research entities to the research topics in CSO.

3.4 AI-KG Statistics
In this section we briefly discuss some analytics about AI-KG.

Table 1. Contribution of extracting resources in term of number of statements.

Source Triples Number
DyGIE++ (Tp++set) 1,002,488
OpenlE (Torgset) 53,883
PoS Tagger (Tp,gset) 55,900

Table 1 shows the number of statements derived from each of the basic tools.

DyGIE++ provided the highest number of triples (Tp4 4 ), while the OpenlE
tool, and the PoS tagger methodology provided a comparable number of triples
(Tp,s + Cons. Triples). However, the set Tpyy contains a large majority of
statements that were extracted from a single article.

To highlight this trend, in Figure 2 we report the distribution of the state-
ments generated by Tpi+, Torg and Tp, g + Cons. Triples according to their
number of associated publications (support). While Th4 4+ produces the most siz-
able part of those statements, most of them have a very low support. For higher
support levels, the set Tp g + Cons. Triples contains more statements than
Tp++ and Torp. This suggests that the inclusion of Tp, g enables to generate
more statements in accordance within the Al community consensus.
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Fig. 2. Distribution of the statements support for each source.

The total number of entities in our KG is 820,732 distributed across the
various types as shown by Table 2. The most frequent entities are methods, but
we also have a large number of tasks and materials.

The distribution of relations within the AI-KG is shown in Figure 3. The most
frequent relation by a large margin is usesMethod that is used to describe the
fact that an entity (Task, Method, or OtherEntity) typically uses a method for a
certain purpose. This relation has many practical uses. For example it enables to
retrieve all the methods used for a certain task (e.g., computer vision). This can
in turn support literature reviews and automatic hypotheses generation tools.
Other interesting and frequent relations include usesMaterial, that could be used
to track the usage of specific resources (e.g., DBpedia), includesMethod, which
enables to assess which are the components of a method, and evaluatesMethod,
that can be used to determine which metrics are used to evaluate a certain
approach. A comprehensive analysis of all the information that can be derived
from AI-KG is out of the scope of this paper and will be tackled in future work.

Table 2. Distribution of entities over types

Type Number of entities
Method 327,079
OtherEntity 298,777
Task 145,901
Material 37,510
Metric 11,465
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Fig. 3. Degree distribution of relations adopted within our statements.

3.5 Generation of New Versions

The pipeline described in this section will be employed on novel research out-
comes in order to keep the AI-KG updated with the latest developments in the
AT community. Specifically, we plan to run it every 6 months on a recent corpus
of articles and release a new version. We are currently working on ingesting a
larger set research papers in the AI domain and further improving our charac-
terization of research entities. As next step, we plan to release a more granular
categorization of the materials by identifying entities such as knowledge bases,
textual datasets, image datasets, and others.

4 Evaluation

For annotation purposes, we focused only on statements where the underlying
subjects and objects covered at least one of the 24 sub-topics of Semantic Web
and at least another topic in the CSO ontology. This set includes 818 statements:
401 from Tpy4, 102 from Torg, 170 from Th,g (110 of them returned by the
classifier for identifying Cons. Triples), and 212 noisy triples that were discarded
by the pipeline as described in Section 3.2. We included the latter to be able to
properly calculate the recall. The total number of triples is slightly less than the
sum of the sets because some of them have been derived by more than one tool.

We asked five researchers in the field of Semantic Web to annotate each
triple either as true or false. Their averaged agreement was 0.747 +0.036, which
indicates a high inter-rater agreement. Then we employed the majority rule
strategy to create the gold standard.

We tested eight different approaches:
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— DyGIE++ from Wadden et al. [30] (section 3.2).

— OpenlE, from Angeli et al. [2] (section 3.2).

— the Stanford Core NLP PoS tagger (section 3.2). (Tp,g). We considered only
the triples with support > 10.

— the Stanford Core NLP PoS tagger enriched by consistent triples. (Ip,q +
Cons. Triples).

— The combination of DyGIE++ and OpenlE (DyGIE++ + OpenlE).

— The combination of DyGIE++ and 15,4 + Cons. Triples (DyGIE++ +
Tp,s + Cons. Triples).

— The combination of OpenlE and Tp, ¢ + Cons. Triples (OpenlE + Tp ¢
+ Cons. Triples).

— The final framework that integrates all the previous methods (OpenlE +
DyGIE++ + T4,¢ + Cons. Triples).

Results are reported in Table 3. DyGIE++ has a very good precision (84.3%)
but a relatively low recall, 54.4%. OpenlE and T} g yield a good precision but
a very low recall. T, ¢ + Cons. Triples obtains the highest precision (84.7%)
of all the tested methods, highlighting the advantages of using a classifier for
selecting consistent triples. Combining the basic methods together raises the
recall without losing much precision. DyGIE++ + OpenlE yields a F-measure
of 72.8% with a recall of 65.1% and DyGIE++ + Tp,¢ + Cons. Triples a F-
measure of 77.1% with a recall of 71.6%. The final method used to generate
AT-KG yields the best recall (80.2%) and F-measure (81.2%) and yields also a
fairly good precision (78.7%).

Table 3. Precision, Recall, and F-measure of each method adopted to extract triples.

Triples identified by Precision Recall F-measure
DyGIE++ 0.8429 0.5443 0.6615
OpenlE 0.7843 0.1288 0.2213
Thos 0.8000 0.0773 0.1410
Tpos + Cons. Triples 0.8471 0.2319 0.3641
DyGIE++ + OpenlE 0.8279 0.6506 0.7286
DyGIE++ + Tp,g + Cons. Triples 0.8349 0.7166 0.7712
OpenlE + Tp,g + Cons. Triples 0.8145 0.3253 0.4649
DyGIE++ + OpenlE + Tp,s + Cons. Triples 0.7871 0.8019 0.8117

5 Conclusions

In this paper we presented AI-KG, a large-scale automatically generated knowl-
edge graph that includes about 1,2M statements describing 820K research en-
tities in the field of Artificial Intelligence. This novel resource was designed for
supporting a variety of systems for analyzing research dynamics, assisting re-
searchers, and informing founding bodies. AI-KG is freely available online and
we hope that the scientific community will further build on it. In future, we plan
to explore more advanced techniques, e.g., graph embeddings for inferring addi-
tional triples and cleaning up wrong statements. Moreover, we intend to perform
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a comprehensive analysis of AI-KG and assess its ability to support a variety
of AT tasks, such as recommending publications, generating new graph embed-
dings, and detecting scientific trends. We would also like to allow the scientific
community to give feedback and suggest edits on AI-KG as we did for CSO?S.
We then plan to apply our pipeline on a even larger set of articles in Computer
Science, in order to generate an extensive representation of this field. Finally, we
will investigate the application of our approach to other domains, including Life
Sciences and Humanities.
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