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Abstract: Today, due to the explosion of online communication, more and more people are interacting1

online and a lot of textual comments are being produced. However, a paramount inconvenience2

within online environments is that comments that are shared within digital platforms can hide hazards3

such as fake news, insults, harassment, and, more in general, comments that may hurt someone’s4

feelings. In this scenario, the detection of this kind of toxicity has an important role to moderate5

online communication. Recently, deep learning technologies delivered impressive performance6

within Natural Language Processing applications encompassing Sentiment Analysis and emotion7

detection across numerous datasets. Such models do not need any pre-defined hand-picked features,8

but they learn sophisticated features from the input datasets by themselves. In such a domain, word9

embeddings have been widely used as a way of representing words in Sentiment Analysis tasks10

proving to be very effective. Therefore, in this paper, we investigated the use of deep learning and11

word embeddings to detect six different types of toxicity within online comments. In doing so, the12

most suitable deep learning layers and state-of-the-art word embeddings to identify toxicity are13

evaluated. The results suggest that Long-Short Term Memory layers in combination with mimicked14

word embeddings are a good choice for this task.15
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1. Introduction17

In these years, short text information is continuously being created due to the explosion of online18

communication, social networks, and e-commerce platforms. Through these systems, people can19

interact with each others, express opinions, engage in discussions, and receive feedback about any20

topic. However, a paramount inconvenience within online environments is that text spread by digital21

platforms can hide hazards such as fake news, insults, harassment, and, more in general, comments22

that may hurt someone’s feeling. These comments can be considered as the digital version of personal23

attacks (e.g., bullying behaviors) that can cause social problems (e.g., racism), and are felt as dangerous24

and critical by people who are struggling to prevent and avoid them. The risk of such a phenomenon25

has increased with the event of social networks and more in general within online communication26

platforms1. An attempt to deal with this issue is the introduction of crowdsourcing voting schemes27

1 https://medium.com/analytics-vidhya/twitter-toxicity-detector-using-tensorflow-js-1140e5ab57ee
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which give the possibility to denounce inappropriate comments in online environments to the users.28

Among many others, Facebook for example allows its users to report a post in terms of violence or hate29

speech [1]. This scheme allows Facebook to identify fake accounts, offensive comments, etc. However,30

these methodologies are often inefficient as they fail to detect toxic comments in real time [2], becoming31

a requirement within social network communities. A toxic post might have been published online32

much earlier than the time it is reported, and during the time it is online it might cause problems and33

offenses to several users which might have undesired behaviors (e.g., leaving the underlying social34

platform). Therefore, detecting toxicity within textual comments through novel technologies has great35

relevance in the prevention of adverse social effects in a timely and appropriate manner within online36

environments [3].37

In the last years, the use of data for extracting meaningful information to interpret opinions and38

sentiments of people about various topics has taken hold. Today, textual online data is parsed to39

predict ratings about online courses [4], sentiments associated to companies and stocks within the40

financial domain [5] and, recently, healthcare [6], toxicity in online platforms [7]. All these approaches41

fall within the Sentiment Analysis research topic, which classifies data into positive or negative classes,42

and includes several subtasks such as emotion detection, aspect-based polarity detection [8], etc. To43

detect such knowledge, supervised Machine Learning-based systems are designed and provided by44

the research community to support and improve online services to mine and use the information. To45

employ supervised Machine Learning based tools, training data is required; however, the amount of46

labeled data might result insufficient, thus making challenging the design of these tools.47

This is more stressed with the spread of Neural Networks and deep learning models, which can48

reproduce cognitive functions and mimic skills typically performed by the human brain, but need49

large amount of data to be trained. With the elapse of time, the interest in these technologies as well as50

their use for the identification of various kinds of toxicity within textual documents are grown [1].51

Word embeddings are one of the cornerstones to represent textual data and feed Machine Learning52

tools. They are representations of words mapped to vectors of real numbers. The first word embedding53

model (Word2Vec) utilizing Neural Networks was published in 2013 [9] by researchers at Google.54

Since then, word embeddings are encountered in almost every Natural Language Processing (NLP)55

model used in practice today. The reason for such a mass adoption is their effectiveness. By translating56

a word to an embedding it becomes possible to model the semantic importance of a word in a numeric57

form and thus perform mathematical operations on it. In 2018, researchers at Google proposed58

the Bidirectional Encoder Representations from Transformers (BERT) [10], a deeply bidirectional,59

unsupervised language representation able to create word embeddings that represent the semantic of60

words in the context they are used. On the contrary, context-free models (e.g, Word2Vec) generate a61

single word embedding representation for each word in the vocabulary independently from the word62

context.63

Within this scenario, in this paper various deep learning models fed by word embeddings are64

designed and evaluated to recognize toxicity levels within textual comments. In details, four deep65

learning models built by using the Keras2 framework are designed, and four different types of word66

embeddings are analysed.67

To this aim, the current state-of-the-art toxicity dataset released during the Kaggle challenge on68

toxic comments3 is used.69

The reader notices that this paper analyses the performances of deep learning and classical70

Machine Learning approaches (using tf-idf and word embeddings) when tackling the task of toxicity71

detection. Basically we want to assess whether the syntactic and semantic information lying within the72

text can provide hints on the presence of certain toxicity classes. In some domains and tasks this is73

2 https://keras.io/
3 https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/overview

https://keras.io/
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not possible: for example, for the problem of identifying empathetic VS non empathetic discussion74

within answers of a therapist during motivational interviews it has been initially observed that75

syntactic and semantic information do not provide any clue for the classification task leading to very76

low accuracies [11]. Thus, for a fair analysis, it is important that the dataset does not contain any77

unbalanceness. Machine Learning classifiers fail to cope with imbalanced training datasets as they are78

sensitive to the proportions of the different classes [12]. As a consequence, these algorithms tend to79

favor the class with the largest proportion of observations, which may lead to misleading accuracies.80

That is why we preprocessed the mentioned dataset to make it balanced and then applied a 10-fold81

cross-validation to tackle the proposed task.82

Thus, this paper provides the following contributions:83

• We analysed four deep learning models based on Dense, Convolutional Neural Network (CNN),84

and Long-Short Term Memory (LSTM) layers to detect various levels of toxicity within online85

textual comments.86

• We evaluate the use of four word embedding representations based on Word2Vec [13,14] and87

Bidirectional Encoder Representations from Transformer (BERT) [15] algorithms for the task of88

toxicity detection in online textual comments.89

• We provide a comparison between deep learning models against common baselines used within90

classification tasks of textual resources.91

• We release contextual word embeddings resource trained on a dataset including toxic comments.92

• We also release mimicked word embeddings of tokens that are missing in the pre-trained Google93

Word2Vec4 word embeddings.94

The source code used for this study is freely available through a GitHub repository5.95

The remainder of this paper is organized as follows. Section 2 includes a literature review and96

discusses current methods for toxicity detection in textual resources. Section 3 formalizes the problem.97

Section 4 describes the word embeddings and deep learning models adopted in this research work.98

Research results and their discussion are reported in Section 5. Finally, Section 6 concludes the paper99

and illustrates future directions to further tackle the detection of toxic comments.100

2. Related Work101

A few past works have already addressed the challenge of detecting toxicity within textual102

comments left by users within online environments. Generally, they rely on Sentiment Analysis103

methods [16–21] to detect and extract the subjective information and classify emotions and sentiments104

to determine if a toxicity facet is present or not. For doing so, NLP, Machine Learning, Text Mining, and105

Computational Linguistics are the most prominent technologies that are employed [22,23]. Sentiment106

Analysis methods, like many others within the Machine Learning domain, can be mainly split into107

two categories. i.e., supervised and unsupervised. Supervised techniques require the use of labeled108

data (training set) to train a model that can be applied to unseen data to predict a sentiment or an109

emotion [24–26]. These methods often are limited by the lack of labeled data, or by the fact that there are110

not either good or enough examples for certain categories (e.g., in case of dataset imbalance) [27]. On111

the other hand, unsupervised Sentiment Analysis approaches usually rely on semantic resources like112

lexicons, where words are assigned to scores for reflecting words relevance for target categories to infer113

sentiments and emotions of the input data [28–30]. Both supervised and unsupervised approaches are114

largely explored in literature for Sentiment Analysis tasks, which include Sentiment Analysis polarity115

detection (i.e., identifying whether a certain text is either positive or negative) [31], figurative-language116

uncovering (understanding if the input text if figurative or objective) [23,32], aspect-based polarity117

detection (e.g., assigning sentiment polarity to features of a certain topic such as the screen of an118

4 https://code.google.com/archive/p/word2vec/
5 https://github.com/danilo-dessi/toxicity

https://code.google.com/archive/p/word2vec/
https://github.com/danilo-dessi/toxicity
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iPhone) [33,34], sentiment scores prediction (e.g., identifying a continuous number in [-1,1] to a certain119

topic or text) [4], and so on.120

However, only recently, these methodologies have been explored for toxicity detection [35],121

although the need to monitor online communications to identify toxicity and make the communications122

safe and respectful is an old and still open issue. Hence, the gap between the current methodologies123

and their potential use within toxicity detection remains an open challenge. Therefore, dealing with124

toxicity raises new challenges and research opportunities where deep learning-based approaches for125

Sentiment Analysis can have a relevant role in making advancements for the identification of toxicity126

levels.127

Also, Semantic Web technologies are being used within Sentiment Analysis tasks. It has been128

proved that they bring several benefits leading to higher accuracy [36]. For example, the use of129

sentiment-based technologies to detect toxicity is investigated in [37]. However, the use of word130

embedding representation is not taken into account. A work worth noting is [23], where authors131

analysed the problem of figurative language detection in social media. More in detail, they focused132

on the use of semantic features extracted with Framester for identifying irony and sarcasm. Semantic133

features have been extracted to enrich the representation of input tweets with event information using134

frames and word senses in addition to lexical units. One more example of an unsupervised method135

that exploits Semantic Web technologies is represented by Sentilo [38,39]. Given a statement expressing136

an opinion, Sentilo recognizes its holder, detects its related topics and subtopics, links them to relevant137

situations and events referred to by it, and evaluates the sentiment expressed on each topic/subtopic.138

Moreover, Sentilo is domain-independent and relies on a novel lexical resource, which enables a proper139

propagation of the sentiment scores from topics to subtopics. Its output is represented as an RDF graph140

and, where applicable, it resolves holders’ and topics’ identity on Linked Data.141

Recently, authors in [35] discussed the problem of toxicity detection and proved that context142

can both amplify or mitigate the perceived toxicity of posts. Besides, they found out no evidence143

that context actually improves the performance of toxicity classifiers. In another work [40] authors144

presented an interactive tool for auditing toxicity detection models by visualizing explanations for145

predictions and providing alternative wordings for detected toxic speech. In particular, they displayed146

the attention of toxicity detection models on user input, providing suggestions on how to replace147

sensitive text with less toxic words.148

Others, [41], tackled the problem of identifying disguised offensive language, such as adversarial149

attacks that avoid known toxic patterns and lexicons. To do that, they proposed a framework to fortify150

existing toxic speech detectors without a large labeled corpus of veiled toxicity. In particular, they151

augmented the toxic speech detector’s training data with new discovered offensive examples.152

Deep learning technologies have been leveraged by authors in [42] to tackle the problem of toxic153

comments detection. More in details, the authors introduced two state-of-the-art neural network154

architectures and demonstrate how to employ a contextual language representation model.155

One more work that deals with a sentiment toxicity detection problem is [7], where authors adopt156

both pre-trained word embeddings and close-domain word embeddings previously trained on a large157

dataset of users’ comments [43]. However, their approach is based on a Logistic Regression (LR)158

classifier and does not use state-of-the-art deep learning technologies. Well established methodologies159

(e.g., k-nearest neighbors (kNN), Naive Bayes (NB), Support Vector Machines (SVM), etc.) are today160

outperformed for the same tasks by CNN-based models by [44].161

One more work for toxicity detection is proposed by authors in [45] and it lies within the context162

of multiplayer online games. There, social interactions are an essential feature for a growing number163

of players worldwide. This interaction might bring undesired and unintended behavior especially if164

the game is designed to be highly competitive. They defined toxicity as the use of profane language by165

one player to insult or humiliate another player in the same team. Given the specific domain, the use of166

bad words is a necessary, but not sufficient condition for toxicity as they can be used to curse without167

the intent to offend anyone. Authors looked at the 100 most frequently used n-grams for n=1,2,3,4168
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and manually determined which of them are toxic or not. With such training data they use a SVM169

to predict the odds of winning for each team to observers based on their communication, while the170

match is still going.171

Another work that embraces both deep learning and word embeddings for toxicity detection172

is reported in [1], where FastText6 pre-trained embeddings are used to feed four different deep173

learning models based on CNN, Long Short Term Memory (LSTM), and Gated Recurrent Unit (GRU)174

layers. However, the experiments show weak results probably due to the class imbalance of classes.175

Conversely, in this work deep learning models by using a balanced dataset are trained, considering one176

toxicity class at a time, and trying to better represent the input texts by using word embeddings tuned177

to the target domain. More precisely, in one set of experiments, domain generated word embeddings178

are created through mimicking techniques; this allows to face slang, misspellings, or obfuscated179

contents not represented within pre-trained word embedding representations [46,47]. Besides the180

Word2Vec embeddings, state-of-the-art word embeddings called BERT [15,48,49] are used to tune the181

vectors to the context where words are used.182

3. Problem Formulation183

The problem faced in this paper is a multi-class multi-label classification problem. We turned it
into several binary single-label classification problems. More precisely, given a textual comment c and
a toxicity facet t, the approach is aimed to build a deep learning model

γ : (c, t)→ l

where l is a binary label that can only assume values in {0, 1} and indicates if the toxicity t is present184

in c (i.e., l takes the value 1) or not (i.e., l takes the value 0). Therefore, with such an approach, an185

independent binary classifier for each toxicity label is trained. Given an unseen sample, each binary186

classifier predicts whether that underlying toxicity is present or not in the sample. The combined187

model then predicts all the labels for this sample for which the respective classifier predicts a positive188

result. Although this method of dividing the task into multiple binary tasks may resemble superficially189

the one-vs-all and one-vs-rest methods for multi-class classification, it is essentially different from190

them because a single binary classifier deals with a single label without any regard to other labels191

whatsoever. This means that each binary classification task we formulated does not benefit from192

the information of the other labels at training time. However, this mapping is straightforward and193

does not change the semantic of the input problem [50]. By building these models for various t, the194

performances of the proposed solutions are evaluated with the goal of finding which combination of195

the deep learning layers and word embeddings can better capture the text peculiarities for toxicity196

detection.197

4. The Proposed Approach198

In this section we will describe the deep learning models and word embedding representations199

for representing the text expressing the various toxicity categories.200

4.1. Preprocessing201

Text preprocessing techniques such as stop words and punctuation removal, lemmatization,202

stemming, matching words with a dictionary to correct grammar, removing words containing203

alpha-numeric characters, and so on, are common practices when Machine Learning algorithms204

are applied [51,52], and text representation is generated as a result of different feature engineering205

processes. However, with the introduction of deep learning approaches, these techniques have not206

6 https://fasttext.cc/docs/en/english-vectors.html

https://fasttext.cc/docs/en/english-vectors.html
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Figure 1. The deep learning models. (a) Dense (b) CNN (c) LSTM (d) Bidirectional LSTM. The output
shape of the employed layers is indicated within the parenthesis.
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shown promising results. The reason is that neural networks learn from any element found within the207

text because each token contributes to the sentence semantics. Therefore, although certain terms might208

be included in existing stop word lists, they are maintained because they can enrich the semantics of209

text content and improve the performance of the deep learning model [1]. Hence, as suggested by210

authors in [1], all the above mentioned preprocessing steps are ignored; only the conversion of texts in211

lower case is performed. Afterward, the whole set of input text is ready to feed a deep learning model.212

More precisely, imagine to have a toxicity target class t and a set of pairs P = {(c0, l0), . . . , (cn, ln)},213

where ci is a textual comment and l0 is a binary label that can only take either the value 0 if the comment214

ci does not include the toxicity t or 1 if the comment ci expresses some level of toxicity t. From the set P,215

the set P′ = {(c′0, l0), . . . , (c′n, ln)} is derived, where each comment c′i is an integer-encoded comment216

of the original ci. In details, let W be the list of all the words belonging to all textual comments, and217

WS the set of all the words in W without duplicates (i.e., WS has only one occurrence for each input218

word, whereas W can contain multiple occurrences of the same element). Then, two functions θ and φ,219

which map the elements in W and WS to unique integer values, respectively, are built. For example,220

consider the sentence you both shut up or you both die and imagine to have the toy functions θtoy and221

φtoy. The function θtoy maps “you” to “7”, “both” to “43”, “shut” to “22”, “up” to “76”, “or” to “10”,222

“you” to “3”, “both” to “41”, and “die” to “50”. The function φtoy maps “you” to “7”, “both” to “43”,223

“shut” to “22”, “up” to “76”, “or” to “10”, and “die” to “50”. Then the integer-encoded sentence224

is [7, 43, 22, 76, 10, 3, 41, 50] by applying θtoy, and [7, 43, 22, 76, 7, 43, 10, 50] by using φtoy. The reader225

notices that by using θtoy the words “you” and “both” are mapped to different integers. Within our226

approach, the function θ is used for BERT word embeddings, whereas the function φ is used to encode227

the input text when Word2Vec word embeddings are employed.228

4.2. Deep Learning Models229

The designed deep learning model schemes are shown in Figure 1. In particular, we illustrate four230

deep learning models based on Dense, CNN, and LSTM layers available within the Keras framework7.231

All the models present the same number of layers. It is worth to note that the input and the output232

layers among the models are the same to better compare their performances considering only the type233

of neural network that they adopt. More precisely, the input layer is an Embedding layer, which has the234

goal of mapping the words of the input text to the underlying word embeddings. The last layer is a235

Dense layer that maps the intermediate results of the models in a single label that can only take the236

values 0 and 1. For doing so, it uses the sigmoid activation function to compute a probability that can237

be easily used to obtain the correct label value. In the next paragraphs we will give more details about238

the deep learning layers.239

The literature already showed [53] that deep learning methods trained with word embeddings240

outperform those trained with tf-idf features. Therefore, we did not include the latter in our analysis241

as we believe that they would not add additional value to the current evaluation.242

4.2.1. Dense Model243

The first model is depicted in Figure 1(a). It is composed of two inner Dense layers with 128 and244

64 neurons. They are densely-connected layers able to reduce the input size of hundred and thousands245

of nodes to a few nodes whose weights can be used to predict the final class of the input.246

4.2.2. CNN Model247

The CNN model depicted in Figure 1(b) is based on inner CNN layers. These layers perform248

filtering operations to detect meaningful features of textual input for the target toxicity facet. Filters249

7 https://keras.io/

https://keras.io/
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can be envisioned as kernels that slide on the vector representation and perform the same operations250

on each element until all the vectors have been covered. Two kernels of size 10 for the first layer,251

and size 5 for the second layer are used. For these layers, the same number of neurons previously252

introduced for the Dense layers is used to better compare the model performances.253

4.2.3. LSTM Model254

The model depicted in Figure 1(c) exploits the LSTM layers to perform a binary classification of255

the input text. LSTMs are an extended version of Recurrent Neural Networks (RNN) and are designed256

to work on sequences. They use memory blocks to hold the state of the computation which makes it257

possible to learn temporal dependencies of data, binding the chunks of data that are currently being258

processed with the chunks of data already processed. This allows to infer semantic patterns that259

describe the history of the input data, solving the problem of common RNN whose results mostly260

depend on the last seen data fed into the model, smoothing the relevance of data previously processed.261

4.2.4. Bidirectional LSTM262

The last model, shown in Figure 1(d), is an evolution of the LSTM model. It uses bidirectional263

LSTM layers to find patterns that can be discovered by exploring the history of the input data in both264

forward and backward directions. The idea of this kind of network consists of presenting the training265

data forwards and backward to the two bidirectional LSTM hidden layers whose results are then266

combined by a common output layer.267

4.3. Word Embeddings Representations268

In this section, the word embedding representations used to model the syntactic and semantic269

properties of the words in vectors of real numbers are introduced. Within this work, the employed270

word embedding representations are Word2Vec [13,14] and BERT [15]. We chose the most common271

sizes for the embeddings, i.e., 300 for Word2Vec embeddings and 1024 for BERT word embeddings.272

4.3.1. Word2Vec273

The Word2Vec [13,14] word embedding generator aims to detect the meaning and semantic274

relations among the words by investigating the co-occurrence of words in documents within a given275

corpus. The idea behind this algorithm is to model the context of words by exploiting Machine276

Learning and statistics and come up with a vector representation for each word within the corpus.277

The resulting word vector representations allow the recognition of relatedness between words. For278

example, the verbs capture and catch, which are syntactically different but share common meaning and279

present analogous co-occurring words, are associated to similar vectors. A Word2Vec model can be280

trained by using either the Continuous Bag-Of-Words (CBOW) or the Skip-gram algorithm. Within our281

work, the Skip-gram algorithm is adopted because from a preliminary evaluation it obtained higher282

performances. In details, the following Word2Vec word embeddings are used:283

• Pre-trained. Pre-trained word embeddings released by Google and available online8. They are284

trained on the Google news dataset and contain more than 1 billion words. However, their285

use can be limited by words that could be misspelled (e.g., words with orthographic errors) or286

domain-dependent words within the input data. These words are commonly referred to as Out287

Of Vocabulary (OOV) words.288

• Domain-trained. Domain-trained word embeddings are trained on the original unbalanced dataset289

(we merged the training and the test set) provided by the Kaggle challenge. The reader notices290

that we computed the domain-trained embeddings on the new training sets only (at each iteration291

8 https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/
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of the 10-fold cross-validation procedure) of our evaluation strategy. Training the embeddings292

on the domain data solves the problem of OOV words because for each word it is possible to293

associate a vector. However, words that are not frequent within our data might have a vector294

that does not fully and correctly represent words’ semantics. The Skip-gram Word2Vec algorithm295

available within the gensim9 library is used. The model is trained using 20 epochs.296

• Mimicked. Mimicked word embeddings are embeddings of OOV words that are not present297

within the original model used to represent the text data, but are inferred by exploiting syntactic298

similarities of words that are in the originally considered vocabulary. More in details, we used299

the algorithm proposed by [47], which is based on an RNN and works at character level. Words300

within an original vector model representation are firstly encoded by sequences of characters,301

and characters are associated with new vector representations. Then, by using a BiLSTM network,302

an OOV word w is associated to a new word embedding e. To create word embeddings for the303

OOV words we used the default input dataset, the hyperparameters mentioned in [47] and the304

pre-trained Word2Vec Google embeddings.305

4.3.2. BERT306

The BERT word embeddings model was introduced in late 2018 by authors in [15]. It is a novel307

model of pre-trained language representations that allows the tuning of word vector representations308

to the meaning that the word has in a given context, overcoming ambiguity issues of words. One309

of the famous examples is usually reported with the word bank. Consider the two sentences “The310

man was accused of robbing a bank” and “The man went fishing by the bank of the river”. The introduced311

word embedding models describe the word bank with the same word embedding, i.e., they express312

all the possible meanings with the same vector, and, therefore, cannot disambiguate the word313

senses based on the surrounding context. On the other hand, BERT produces two different word314

embeddings, coming up with more accurate representations for the two different meanings. For doing315

so, BERT computes context-tuned word embeddings resulting in more accurate representations which316

might lead to better model performances. In this work, the bert_24_1024_16 BERT model trained on317

book_corpus_wiki_en_cased is employed and fine-tuned by using the bert_embedding10 library.318

4.3.3. Word Embeddings Preparation319

To load word embeddings into a deep learning model, they have to be organized into a matrix320

M. For Word2Vec word embeddings, the set WS of words in the input data is used to build M as a321

matrix of size (|WS|, 300), where each row with index φ(w) | w ∈WS (i.e., rowφ(w)) contains the word322

embedding of the word w. If a word w is not present in the Word2Vec selected resource (e.g., when only323

pre-trained word embeddings are used), then rowφ(w) is a row with all its entries set to 0. Similarly,324

when the BERT embeddings are employed, the matrix M size is (|W|, 1024), where each row with325

index θ(w) | w ∈W ( i.e., rowθ(w)) contains the word embedding of the word w. The generated matrix326

M is loaded into the Embedding layer of the employed deep learning model to map the encoded textual327

comments to the correct word embeddings.328

5. Experimental study329

In this section we describe the dataset used to perform our experiments, the obtained results, and330

the related discussion. All the experiments are run by using a 10-fold cross-validation setup. Each331

model is trained with batches of size 128. The model is configured to train at most with 20 epochs.332

However, an early stopping method with patience of 5 epochs and a delta of 0.05 that monitors the333

accuracy of the model are embedded within the training stage. The loss function used to train the334

9 https://radimrehurek.com/gensim/
10 https://pypi.org/project/bert-embedding/

https://radimrehurek.com/gensim/
https://pypi.org/project/bert-embedding/
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Table 1. Number of textual comments for each class.

Toxicity
class

Number of
comments Percentage Balanced

dataset size

No toxic 201,081 89.95% -
toxic 21,384 9.57% 42,768

severe toxic 1,962 0.88% 3,924
obscene 12,140 5.43% 24,280
threat 689 0.31% 1,378
insult 11,304 5.06% 22,608

identity hate 2,117 0.95% 4,234

models is the binary crossentropy and the used optimizer is rmsprop with the default learning rate 0.001335

provided by the used library. The domain-trained word embeddings have been computed on the336

training sets only at each iteration of the 10-fold cross-validation procedure. All the other parameters337

have been empirically set on the basis of the models performance and previous experiences in past338

works [4,46]. The experiments have been carried out on a Titan X GPU mounted on a server with 16339

GB of RAM memory.340

5.1. The Dataset341

To perform our analysis we employed the dataset released by a Kaggle competition11. The dataset342

is collected from Wikipedia comments that have been manually labeled into 6 different toxicity classes.343

It consists of training and test files. However, the original split is not kept in order to apply the344

proposed approach and balance the data. The dataset is composed of more than 200k comments and345

presents annotations for six different toxicity classes and one more class when no toxicity is present.346

Table 1 reports the number of comments and the related percentage concerning the original dataset347

(second and third columns) belonging to each of the seven resulting classes. The first row includes the348

comments that do not present toxicity, then from the second row on, the number of comments for each349

toxicity class (toxic, severetoxic, obscene, threat, insult, identityhate) are reported. Besides, from Table 1350

it is worth to note that the dataset is strongly unbalanced as nearly 90% of the overall comments do not351

present toxicity. Therefore, as mentioned early in the paper, the training of a model is biased because352

the model does not have a sufficient number of examples of the minority class to correctly identify353

a pattern. A random model that always predicts the majority class can obtain better performances354

although it is not be able to recognize elements that should belong to the minority class. Hence, having355

a balanced dataset is a common procedure in several classification tasks [54] and allows understanding356

better the performances of a model [12]. It follows that for each toxicity class we built a dataset where357

the number of positive examples (i.e., comments that present the target toxicity class) and the number358

of negative examples (i.e., comments that do not present that target toxicity class) are the same. The359

size of the created datasets for each class are reported in Table 1 under the Balanced dataset size column.360

The reader notices that, for a certain toxicity class, the negative examples are chosen among all the361

other classes including the No toxic comments.362

5.2. Baselines363

For evaluation purposes, the deep learning models have been compared to a certain number of364

baselines. These are classical Machine Learning classifiers that are usually employed with the tf-idf to365

11 https://www.kaggle.com/

https://www.kaggle.com/
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represent textual resources [51]. More precisely, the deep learning models are compared against the366

following classifiers:367

• Decision Tree (DT). The Decision Tree algorithm builds a model by learning decision rules that368

when applied to the input features can correctly predict the target class. The model has a root369

node that represents the whole set of input data. This node is subsequently split into its children370

by applying a given rule. The process is then applied to its children recursively as long as there371

are nodes that can be split.372

• Random Forest (RF). This method adopts more DTs applied on different samples of the input373

data and uses a majority voting strategy to predict the output classes. The strength of this374

algorithm is that each DT is individually trained; therefore, overfitting and errors due to biases375

are limited. We adopted a classifier that made use of 100 DTs estimators.376

• Multi-Layer Perceptron (MLP). This is a neural network that is composed of a single layer of377

nodes. In our experiment, we used a layer with 100 nodes.378

For these classical Machine Learning methods employed as baselines the adoption of just word379

embeddings is not promising and this has already been shown in literature [55]. In particular, when380

employing word embeddings for classical Machine Learning methods, they should be processed by381

operations such as the average or the sum before being fed to a given classifier. This causes loss of382

syntactic and semantic information expressed by the embeddings of each word.383

To develop the algorithms above we employed the scikit-learn12 library.384

Additionally, the area under the ROC (Receiver Operating Characteristic) curve (ROC-AUC) is385

also reported in Table 2 in order to understand the performance of our model with respect to the best386

models proposed for the challenge’s task.387

Table 2. ROC-AUC values of our deep learning models on each binary classification and average for
each model.

Learning
Model

Word
Embeddings Toxic Severe

Toxic Obscene Threat
Identity

Hate Insult Average

Deep Model
Dense

pre-trained 0.921 0.968 0.936 0.977 0.944 0.933 0.947
domain-trained 0.915 0.959 0.928 0.968 0.934 0.924 0.938

mimicked 0.922 0.969 0.938 0.981 0.941 0.931 0.947
bert 0.898 0.964 0.904 0.945 0.924 0.906 0.924

Deep Model
CNN

pre-trained 0.905 0.964 0.924 0.969 0.934 0.915 0.935
domain-trained 0.895 0.950 0.857 0.957 0.909 0.903 0.912

mimicked 0.906 0.961 0.923 0.974 0.935 0.914 0.936
bert 0.881 0.952 0.894 0.909 0.892 0.895 0.904

Deep Model
LSTM

pre-trained 0.970 0.982 0.980 0.983 0.968 0.976 0.977
domain-trained 0.963 0.980 0.977 0.983 0.968 0.970 0.974

mimicked 0.971 0.983 0.977 0.985 0.970 0.977 0.977
bert 0.930 0.974 0.940 0.956 0.950 0.940 0.948

Deep Model
Bidirectional

LSTM

pre-trained 0.969 0.981 0.973 0.984 0.967 0.975 0.975
domain-trained 0.963 0.980 0.977 0.984 0.964 0.970 0.973

mimicked 0.969 0.963 0.980 0.988 0.970 0.976 0.974
bert 0.930 0.970 0.939 0.951 0.947 0.941 0.946

12 https://scikit-learn.org/stable/index.html

https://scikit-learn.org/stable/index.html
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Table 3. Precision (p), recall (r), and f-measure (f) related to the binary classification for each toxicity
class using the balanced dataset.

Learning
Model

Word
Embeddings Toxic

Severe
Toxic Obscene

p r f p r f p r f

Decision Trees
Random Forests

MLP

tf-idf 0.859 0.855 0.857 0.847 0.947 0.894 0.926 0.929 0.928
tf-idf 0.860 0.856 0.858 0.888 0.940 0.913 0.945 0.834 0.913
tf-idf 0.849 0.857 0.853 0.913 0.918 0.915 0.884 0.895 0.889

Deep Model
Dense

pre-trained 0.863 0.856 0.858 0.923 0.910 0.916 0.886 0.867 0.876
domain-trained 0.855 0.848 0.851 0.893 0.910 0.899 0.874 0.863 0.867

mimicked 0.868 0.844 0.855 0.926 0.914 0.919 0.880 0.877 0.878
bert 0.828 0.817 0.822 0.912 0.917 0.913 0.844 0.821 0.832

Deep Model
CNN

pre-trained 0.848 0.849 0.848 0.910 0.911 0.909 0.863 0.861 0.861
domain-trained 0.846 0.841 0.842 0.903 0.875 0.888 0.858 0.849 0.853

mimicked 0.836 0.865 0.850 0.886 0.919 0.901 0.856 0.870 0.862
bert 0.801 0.812 0.805 0.899 0.911 0.904 0.819 0.832 0.825

Deep Model
LSTM

pre-trained 0.914 0.915 0.914 0.944 0.962 0.953 0.927 0.949 0.938
domain-trained 0.903 0.916 0.909 0.947 0.948 0.947 0.929 0.944 0.936

mimicked 0.895 0.938 0.916 0.941 0.966 0.953 0.928 0.938 0.932
bert 0.866 0.851 0.858 0.927 0.932 0.929 0.889 0.861 0.875

Deep Model
Bidirectional

LSTM

pre-trained 0.906 0.923 0.914 0.936 0.959 0.947 0.963 0.854 0.905
domain-trained 0.905 0.915 0.910 0.948 0.962 0.955 0.941 0.933 0.937

mimicked 0.910 0.921 0.915 0.939 0.963 0.951 0.929 0.945 0.937
bert 0.875 0.841 0.856 0.933 0.941 0.937 0.892 0.852 0.871

Learning
Model

Word
Embeddings

Threat
Identity

Hate Insult
p r f p r f p r f

Decision Trees
Random Forests

MLP

tf-idf 0.917 0.891 0.903 0.819 0.927 0.869 0.887 0.891 0.889
tf-idf 0.954 0.897 0.924 0.847 0.911 0.877 0.929 0.851 0.888
tf-idf 0.914 0.916 0.913 0.889 0.897 0.893 0.871 0.880 0.876

Deep Model
Dense

pre-trained 0.934 0.930 0.931 0.897 0.865 0.879 0.872 0.865 0.869
domain-trained 0.913 0.918 0.914 0.858 0.877 0.866 0.876 0.846 0.860

mimicked 0.933 0.932 0.931 0.881 0.882 0.880 0.873 0.857 0.863
bert 0.867 0.891 0.877 0.874 0.865 0.855 0.841 0.827 0.834

Deep Model
CNN

pre-trained 0.932 0.870 0.891 0.872 0.863 0.867 0.842 0.862 0.851
domain-trained 0.898 0.899 0.898 0.823 0.868 0.842 0.874 0.816 0.843

mimicked 0.927 0.918 0.922 0.860 0.879 0.869 0.847 0.849 0.847
bert 0.842 0.872 0.849 0.824 0.842 0.832 0.831 0.821 0.826

Deep Model
LSTM

pre-trained 0.932 0.967 0.948 0.907 0.909 0.906 0.918 0.939 0.928
domain-trained 0.949 0.951 0.950 0.913 0.925 0.918 0.919 0.930 0.924

mimicked 0.953 0.962 0.957 0.887 0.946 0.914 0.916 0.948 0.931
bert 0.916 0.899 0.907 0.880 0.895 0.886 0.874 0.870 0.872

Deep Model
Bidirectional

LSTM

pre-trained 0.946 0.961 0.952 0.905 0.921 0.912 0.918 0.931 0.924
domain-trained 0.949 0.949 0.949 0.904 0.935 0.919 0.918 0.938 0.927

mimicked 0.941 0.944 0.940 0.902 0.934 0.916 0.920 0.935 0.927
bert 0.913 0.900 0.905 0.900 0.857 0.874 0.889 0.866 0.877
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5.3. Results and Discussion388

In this section, we discuss the results of the experiments we have carried. They are reported389

in Tables 2 and 3 in terms of ROC-AUC, precision, recall, and f-measure scores (for computing the390

ROC-AUC, the true positive rates and false positive rates are computed accordingly to Equations (1)391

and (2); precision, recall and f-measure are computed according to Equations (3), (4), and (5)). In392

the equations, TP (true positives) is the number of comments with the target toxicity class correctly393

guessed by the model, FP (false positives) is the number of comments erroneously associated to a394

target toxicity class, TN (true negatives) is the number of comments that the classifier correctly does not395

classify for a target class, and FN (false negatives) is the number of comments erroneously classified396

with a class different than the target class.397

True positive rate =
TN

TN + FP
(1)

False positive rate =
FP

FP + TN
(2)

Precision (p) =
TP

TP + FP
(3)

Recall (r) =
TP

TP + FN
(4)

F−measure ( f ) = 2 · P · R
P + R

(5)

Results depicted in Table 3 show how the deep learning models perform against the baselines398

(classical Machine Learning approaches). For each deep learning model, the performance of the model399

in combination with the embedding representations is illustrated as well.400

5.4. Comparison with the Kaggle Challenge401

The results indicated in Table 2 report the ROC-AUC values of our deep learning approaches for402

each toxicity class and the average over all the classes. The reader notices that it is not the purpose of403

this paper to compete with the other participants of the Kaggle challenge where the data have been404

extracted and the evaluation has been reported using the ROC-AUC. The best three approaches of the405

challenge were Toxic Crusaders, neongen & Computer says no, and Adversarial Autoencoder, which reported406

a ROC-AUC value of 0.989, 0.988, and 0.988, respectively. The challenge task was to test any proposed407

approach on a highly unbalanced dataset. In this paper we wanted to study how deep learning408

methods and classical Machine Learning approaches (using tf-idf and word embeddings) perform on409

the toxicity problem without any bias (unbalanceness of the data). Moreover, it has been proved that410

optimizing a method for the ROC-AUC does not guarantee the optimization on the precision-recall411

curve [56]. This is why we included Table 3 with precision, recall and f-measure metrics computed on412

the preprocessed balanced dataset. There are several heuristics and tuning that can be done in presence413

of unbalanced datasets to help achieving high values of ROC-AUC. Those could not be performed by414

us since we used a balanced version of the original dataset.415

5.4.1. Baseline Comparison416

The results indicate that Dense- and CNN-based models are not much better than the baseline417

methods. Actually, in some cases, they are outperformed. For example, considering the toxicity418

classes obscene and insult, it is possible to observe that the f-measure computed on the baseline419

predictions is higher than the one obtained by Dense- and CNN-based models. On the other hand,420

LSTM-based models are able to outperform the baseline methods with a minimum improvement in421



Version March 23, 2021 submitted to Electronics 14 of 19

terms of f-measure of 0.01, i.e., in percentage 1% (see obscene class), and a maximum of 0.058, i.e.,422

in percentage 5.8% (see toxic class). These results are similar, and sometimes still more noticeable423

when the Bidirectional LSTM layers are employed. Moreover, considering that by using the balanced424

dataset every classifier is able to obtain a f-measure always higher than 0.8, the improvements can be425

considered remarkable. The only drawback is related to the computational time needed to train the426

deep learning model. Nevertheless, the training time is not reported since i) it is out of the scope of427

this study ii) with modern GPUs it is feasible to train complex deep learning models iii) the training428

step must be executed only once, and iv) the computational time needed for the prediction step does429

not depend on the underlying model used for the training step.430

5.4.2. Dense-based Model431

For the task of toxicity detection the Dense-based model never obtains the best performances. In432

most of the cases, the best results with this model are obtained with the mimicked word embeddings433

where for four out of six classes the achieved f-measure score is the highest. The pre-trained word434

embeddings obtain high performances too, especially for classes such as Toxic, Threat (in this case435

the f-measure is very close to the case when using mimicked), and Insult. The use of domain-trained436

word embeddings never meets high scores, except when the precision is considered for the Insult class.437

Similarly, BERT word embeddings performances are the worst.438

5.4.3. CNN-based Model439

Using the CNN-based model the results do not improve further with respect to the Dense-based440

model. In some cases, the performances of the model are even lower. With this model, the best results441

are obtained by employing the mimicked word embeddings for the toxicity classes Toxic, Obscene, Threat,442

and Identity Hate. For the other toxicity classes, the best results are obtained using the pre-trained word443

embeddings. Domain-trained and BERT embeddings are not able to properly represent the domain444

knowledge for the CNN model, thus the results are poor.445

5.4.4. LSTM-based Model446

The LSTM model outperforms both Dense and CNN-based models, proving its suitability to detect447

patterns for toxic detection. As previously mentioned, mimicked word embeddings are employed448

for the deep learning model to learn and uncover toxicity from the text comments. Pre-trained and449

Domain-trained word embeddings obtain good performances, and their results are not far from the450

model using the mimicked word embeddings. On the other hand, once again BERT is not a good451

representation for the LSTM model. Except for BERT, the three other word embeddings adopted with452

the LSTM model outperform the baseline methods for almost each toxicity level.453

5.4.5. BiLSTM-based Model454

Although the higher complexity of the employed layers, the results of the BiLSTM (Bidirectional455

LSTM) model are similar to those obtained by the LSTM model. In some cases, the BiLSTM is able to456

outperform the LSTM, in others it is not. Moreover, it differs from the other models because its best457

performances for many classes are obtained using the domain-trained word embeddings. The pre-trained458

and mimicked word embeddings continued to show good ability to represent domain knowledge, and459

BERT embeddings confirm to be the last choice for the task of toxicity detection. Similarly to the LSTM460

model, except using BERT, the model outperforms the baselines in almost each toxicity class.461

5.4.6. Overall evaluation of the deep learning models462

The use of deep learning for the task of toxicity detection has shown good performances in all the463

toxicity classes. Also, it turns out that although the small size of datasets employed for certain classes,464

they are able to detect patterns that allow to correctly perform the classification. More in details, the465
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results suggest that the Dense and CNN models perform well since their f-measure is always higher466

than 0.8 but, for the toxicity detection task, they are outperformed by the LSTM and BiLSTM models,467

which obtain a f-measure higher than 0.9 in most of the cases. Results are comparable among the468

LSTM and BiLSTM models. However, because BiLSTM-based models need higher computational469

time to be trained than LSTM models, the latter are slightly preferred. It is worth to mention that the470

current models are trained without the context that was surrounding the comments in the Wikipedia471

pages (where the dataset has been originally collected) and, therefore, they might lack the necessary472

information to predict the correct class. One more obstacle might be also due to the presence of473

figurative language within the comments, which might change the meaning of the sentences, thus474

misleading the models. For example, a frequent sentence like I am going to kill you pronounced after a475

mistake or an undesired change in the Wikipedia pages does not necessarily convey a threat or hate476

emotion but it may be simply a joke.477

5.4.7. Overall evaluation of word embeddings478

From the results, it is noticeable that the Word2Vec algorithm is a good choice to represent textual479

resources to be parsed with deep learning models. Results suggest that mimicked word embeddings are480

the best choice because they enclose the knowledge of pre-trained word embeddings that have been481

built on a large dataset and do not suffer from the OOV words problem [46]. Domain-trained word482

embeddings obtain good results but, for most of the cases, they are outperformed. This may depend483

on the fact that the resources employed to train these embeddings are not very large and, besides, there484

are not a sufficient number of examples of toxicity due to the unbalanced number of toxic comments485

in the input dataset (i.e., more than 200k comments do not present toxicity, the reader can see Table 1).486

Surprisingly, BERT embeddings perform badly for the task of toxicity detection although they487

are currently the state-of-the-art word embedding representations. A possible motivation behind488

this finding is that assigning a different embedding to the same word is somehow misleading to the489

training of the deep learning models. More precisely, the tuning step performed to generate the BERT490

embeddings on our data is not able to capture the context of the words due to the length of some input491

textual comments and to the typos and incorrect grammar often present within them, thus transferring492

possible erroneous information to our deep learning models. One more reason might be due to the493

lack of the surrounding context of the comments; it might have limited the fine-tuning of the model,494

therefore leading the semantics of words to be captured badly. This fact is worth to be investigated,495

and a close analysis to this problem is required.496

6. Conclusion and Future Work497

In this paper, we presented an assessment of various deep learning models fed by various word498

embedding representations to detect toxicity within textual comments. From the obtained results499

we can definitely state that toxicity can be identified by machine and deep learning approaches fed500

with syntactic and semantic information extracted from the text. We show how LSTM-based model is501

the first choice among the experimented models to detect toxicity. We also show how various word502

embeddings may represent the domain knowledge in a variety of ways, and an unique model for all503

cases might be insufficient. In particular, the results are encouraging when using mimicking techniques504

to deal with OOV words where there are not many examples to build significant domain-dependent505

word embeddings. As future works, we plan to perform a deeper assessment of deep learning models506

by using and combining different layers, to better detect patterns and on real scenarios where classes507

may be unbalanced as well. Moreover, we would like to investigate other contextualized word508

embedding representations such as ELMO [57] for the toxicity detection task. An analysis of the509

proposed approaches on which configuration, parameter settings and heuristic may be added to tackle510

the same problem but in presence of highly unbalanced datasets is definitely a research direction we511

would like to investigate as well. Finally, we would like to investigate the impact of using different512

embeddings for the same word since it might be the cause of failure of BERT embeddings in our513
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experiments. We also think that an ensemble strategy of the proposed approaches should result in514

better overall performances and are then investigating this direction as well.515
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Abbreviations519

The following abbreviations are used in this manuscript:520

521

AUC Area under the curve
BERT Bidirectional Encoder Representations from Transformers
BiLSTM Bidirectional Long-Short Term Memory
CBOW Continuous Bag-Of-Words
CNN Convolutional Neural Network
DT Decision Tree
ELMO Embeddings from Language Models
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
kNN k-Nearest Neighbors
LR Logistic Regression
LSTM Long-Short Term Memory
MLP Multi-Layer Perceptron
NB Naive Bayes
NLP Natural Language Processing
OOV Out Of Vocabulary
RF Random Forest
ROC Receiver Operating Characteristic
RNN Recurrent Neural Network
TF-IDF Term Frequency–Inverse Document Frequency
SVM Support Vector Machine
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