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Materials fatigue prediction 
using graph neural networks 
on microstructure representations
Akhil Thomas 1,2*, Ali Riza Durmaz 1,2, Mehwish Alam 3, Peter Gumbsch 1,4, Harald Sack 5,6 & 
Chris Eberl 1,2

The local prediction of fatigue damage within polycrystals in a high-cycle fatigue setting is a long-
lasting and challenging task. It requires identifying grains tending to accumulate plastic deformation 
under cyclic loading. We address this task by transcribing ferritic steel microtexture and damage 
maps from experiments into a microstructure graph. Here, grains constitute graph nodes connected 
by edges whenever grains share a common boundary. Fatigue loading causes some grains to 
develop slip markings, which can evolve into microcracks and lead to failure. This data set enables 
applying graph neural network variants on the task of binary grain-wise damage classification. 
The objective is to identify suitable data representations and models with an appropriate inductive 
bias to learn the underlying damage formation causes. Here, graph convolutional networks yielded 
the best performance with a balanced accuracy of 0.72 and a  F1-score of 0.34, outperforming 
phenomenological crystal plasticity (+ 68%) and conventional machine learning (+ 17%) models by 
large margins. Further, we present an interpretability analysis that highlights the grains along with 
features that are considered important by the graph model for the prediction of fatigue damage 
initiation, thus demonstrating the potential of such techniques to reveal underlying mechanisms and 
microstructural driving forces in critical grain ensembles.

The notion of polycrystalline microstructure embodies a network of grains containing a variety of crystallo-
graphic defects. This defect network is a consequence of the processing history and governs the majority of the 
material’s properties. Therefore, the microstructure acts as a central element to establish so-called process-struc-
ture-property (PSP) relationships for polycrystalline materials. Numerous PSP chains are of interest to material 
scientists. However, for many of them, due to pronounced problem complexity or computational constraints, 
physics-based models fail to capture the underlying mechanisms comprehensively. Depending on the property 
of concern, for its forward prediction, microstructure representations with distinct levels of detail are required. 
While, for instance, an estimation of yield strength in a first approximation can be addressed with average 
grain size, predicting fatigue damage initiation sites necessitates nuanced and comprehensive microstructure 
representations. Latter is owed to the fact that there is a pronounced microstructure sensitivity in the regime of 
cyclic microplasticity, i.e. when the loading barely exceeds the materials’ onset of plasticity and  irreversibility1. 
In this high cycle fatigue (HCF) scenario, predicting fatigue damage and crack initiation sites in metallic alloys 
is essential as it dictates the overall fatigue life. However, for this regime, the mechanistic understanding is 
incomplete, especially where sophisticated technical alloys are concerned. For such high-complexity problems 
with inchoate domain knowledge, data-driven techniques are promising candidates to find meaningful relations 
in the data. In particular, machine learning (ML) techniques can be employed, which enjoyed popularity and 
success to an extent where such models replaced or complemented physics-based models during the past decade. 
Consequently, a wealth of tailor-made techniques is available for distinct input data representations. This spoils 
us for choice and raises the question of how to ideally represent a microstructure and which model to utilize for 
a specific task such as predicting fatigue damage sites.

A straightforward representation is pixel or voxel data for which convolutional neural networks (CNN) often 
provide appropriate inductive bias. Meanwhile, these models are well established in materials science, especially 
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for tasks such as segmentation and prediction of damage and crystallographic  phases2–6. However, for predict-
ing microstructural fatigue damage sites, where high-dimensional data is necessary to capture the interactions 
between various influence factors, pixel/voxel-based approaches are often infeasible due to their pronounced 
computational demand. Another way to represent microstructure is by clustering pixel/voxel regions, correspond-
ing to physical concepts such as grains, to individual data instances with multidimensional features extracted 
and aggregated from the regions. This results in a tabular representation that can be utilized in conventional ML 
approaches such as random forests (RF) and support vector machines (SVM). In literature, grain-level representa-
tions in conjunction with conventional ML models have been utilized to predict twinning  events7 and stress hot-
spot  localization8 within polycrystals. Conventional models are faster to train and easier to optimize than CNN 
due to their fewer training and hyperparameters but require that the input features provided are discriminative 
to the task at hand. In contrast, in models like multilayer perceptrons (MLP) the requirement for high feature 
quality is discounted since such models also learn to combine and find useful features from the initial inputs.

An issue with the tabular representation is that dependencies between individual grains are not easy to model 
since this representation assumes grains to be independent and identically distributed and considers them as 
isolated data instances. Instead, representing microstructures as a graph can help model various dependencies 
and interactions between individual grains. This can be done by modeling grains as nodes and dependencies 
between them as relations in a graph. In comparison to pixel or voxel-based techniques, computational graphs are 
non-Euclidean in nature and permit a physical and flexible description of microstructures and their entities. Not 
being restricted to a regular grid implies that multi-scale problems, such as materials fatigue, can be addressed 
efficiently. Amongst others, this facilitates considering heterogeneous graphs composed of grain and inclusion 
node entities. Since both entities exhibit different sizes, representing them as pixels/voxels with a single image 
resolution cause either information loss or computational overhead.

The graph representations of materials microstructures can be utilized by several ML algorithms designed to 
work on graphs. One class amongst them that can leverage the structure/neighborhood information is the graph 
neural network (GNN) introduced by Scarselli et al.9 From the initial GNN model, numerous variants have been 
derived which can operate on specific graph types and differ in how the node information is transformed, aggre-
gated across neighbor nodes, and updated. The message-passing neural network (MPNN) framework proposed 
by Gilmer et al.10 unifies several of these GNN variants using a generalized description. The graph convolutional 
network (GCN) introduced by Kipf et al.11 is the generalization of the convolution to the graph domain and oper-
ates in the spectral domain. GCNs were originally proposed for semi-supervised node classification problems and 
are trained in a transductive setting. The graph isomorphism network (GIN) architecture proposed by Xu et al.12 
was based on two characteristic changes compared to GCN. Instead of using a weighted average to aggregate the 
states from neighbor nodes, GINs perform a simple summation. Secondly, in GIN, a few MLP layers increase the 
expressivity when updating the target node representation based on the message aggregated from its neighbor 
nodes. These changes are designed to improve the sensitivity of the graph embedding. Most of these methods 
apply to graphs that contain a single node type and typically also a single edge type, i.e., homogeneous graphs.

Another extension to graph neural network techniques attempted to encode structural properties such as 
molecular bond angles in an additional line  graph13,14. Similarly, the crystallographic unit cell structure was 
encoded in graph representations to predict energy band gaps from multi-fidelity ab-initio simulations was 
proposed  previously15. Yang et al.16 use GNNs to predict atom-level properties, including stress fields and energy 
distributions, by modeling a few grains along with contained structural defects. Instances, where the microstruc-
ture topology was captured in graphs were presented to predict the stored elastic energy  functional17, grain-scale 
 toughness18, effective  magnetostriction19, and deformation  twinning20. Graph-based approaches and the notion 
of message passing between node entities provide an inductive bias that might be suitable to learn aspects such 
as interactions within grain ensembles. This entails, for instance, concepts such as elastic and plastic incompat-
ibilities or how close damage sites are to each neighboring grain.

In this work, we utilize multimodal data sets from correlative  microscopy21 to derive fatigue feature repre-
sentations and assess their suitability to predict high cycle fatigue damage formation. In particular, we address 
the formation of slip markings (see Fig. 1a,b,c) that pose rare events and act as precursors for crack initiation. A 
series of known microstructural aspects affect slip marking formation, including the grains’ size and tendency 
to accommodate multiple slips, elastic incompatibilities between adjacent grains, the initial dislocation density, 
the presence of precipitates, and the involved grain boundaries’ resistance to slip transmission to name a few. 
The infrequency of slip-marking formation not only prolongs the acquisition of statistically representative data 
sets but also culminates in an inherent data imbalance that needs to be accounted for during learning. Another 
challenge lies in the time-efficient acquisition of complete feature representations. To date, no individual char-
acterization method captures all influence factors while also complying with testing requirements such as high 
frequent cycling. As a consequence, the data sets are afflicted by high epistemic uncertainty.

Feature representations that describe the initial specimen state and loading scenario are used to train binary 
classifiers predicting whether grains will accommodate slip markings. Features utilized entail crystallographic, 
morphological, and micromechanical descriptors such as Euler angles, grain disorientation angles, grain size, 
and Schmid factors to name a few. A comprehensive list is provided in Table 4. A significant contribution lies in 
investigating the efficiency of tabular and graph microstructure representations in conjunction with associated 
ML methodologies. Figure 1d illustrates the graph representation of the grain and its neighborhood from Fig. 1a. 
In contrast, Fig. 1e depicts how a tabular representation is built from such grain-wise abstractions. Assessed 
learning methodologies on the tabular representation comprise balanced random forests (BRF), SVM, and MLP. 
On the graph representation, the previously mentioned graph neural network approaches GCN and GIN are 
applied. The shortcomings of different microstructure representations concerning their information loss and 
their compatibility with learning algorithms are discussed. This includes suitable graph neural network exten-
sions to account for nuanced feature interactions across connected grain nodes.
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Results: modeling grain-wise damage with binary classifiers
This section presents the performance of classifiers trained to discern grains that will contain fatigue slip mark-
ings from those grains resilient to surface damage accumulation. As a prerequisite, an unprecedented benchmark 
data set that will facilitate such a study was prepared and  published22. The data set originates from the multimodal 
fatigue experimental data of ferritic steel specimens presented in Durmaz et al.23. This data is post-processed to 
generate grain-level feature descriptors and slip marking annotations, the former acting as inputs and the latter 
acting as labels for the ML models in a tabular representation. Further, a graph representation of the data set 
is also generated, where in addition to the grain features, adjacency information is added as edges connecting 
neighboring grains. The data set has 7633 grains, of which only 311 are annotated with slip markings (mak-
ing it a highly imbalanced data set, but representative of the HCF loading), with each grain having 120 feature 
descriptors. Data set generation and feature engineering is further described in "Data set generation" and "Feature 
engineering" sections.

In the following, results for the individual ML models on both the tabular and graph data sets are compared. 
For the tabular representation, all conventional ML models shown in Table 1 are trained. However, the graph 
representation of data requires a separate class of ML models to be trained on them, namely graph neural net-
works, which are described in "Graph-based machine learning approaches" section. To gauge these results, a 
comparison is drawn with fatigue indicator parameters (FIP) derived from phenomenological crystal plasticity 
simulations shown by Durmaz et al.23 and summarized in supplementary note 3. This knowledge-based model 
acts as a baseline model for our classification problem. However, the baseline model results are only available 
for one specimen side (P2_8 marked) which necessitates the evaluation of ML models only on this data subset 
for comparison.

We used  F1-score as the primary metric for evaluation, which penalizes both false positives as well as false 
negatives, striking a balance between precision and recall metrics and is a popular metric for imbalanced data 
sets. All utilized evaluation metrics are summarized in the supplementary table 1 and are defined from zero to 
unity (the higher the better). To study the effect of feature dimensionality reduction, selected ML models were 
also trained on feature projections made from principal component analysis (PCA). In this case, the node features 

Figure 1.  Example protrusion instances and the conversion of a grain neighborhood into graph and tabular 
representations. The scanning electron microscopy images in subfigures (a)–(c) display protrusions that are 
distributed, transition through a grain boundary, and are delimited by a grain boundary, respectively. For 
the grain in (a), subfigure (d) illustrates the surrounding microstructure and its graph representation while 
subfigure (e) displays its tabular representation. The full list of features computed for each grain is provided in 
Table 4. The micron bar in subfigure (d) corresponds to 50 μm.
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in the data set were projected onto the first 55 principal components. The number of principal components was 
chosen such that the components cover >95% of the total variance in the data set.

The hyperparameters optimized for each model and the applied imbalance correction techniques are 
described in supplementary note 4. We trained all ML models in a transductive setting using the same five-fold 
data set split. Alternate options for creating folds are elucidated in supplementary note 8. Each model was trained 
five times with a different random initialization, and the best run as well as the average performance and scat-
ter are documented. The results presented are aggregated from the validation set performance of the respective 
models from all five folds.

From Table 1, it can be seen that graph-based models (GCN, GIN, and variants), presented in "Graph-based 
machine learning approaches" section, perform better than conventional ML models on the complete data set. 
Compared to MLPs, GCN gives us an improvement of approximately 14% in  F1-score. A similar observation 
can be made from the model comparison on a single specimen side. Moreover, in this case, the GCN-PCA 
model surpasses the baseline performance by 76%. Additionally, it could be seen that using PCA-transformed 
features results in slight improvements, especially in the GCN case. In the GCN-BCE case, where no measures 
were taken to account for data imbalance, the performance drops by 0.02–0.03 in  F1-score as opposed to an 
imbalance-corrected variant (GCN). During GCN hyperparameter optimization, the amount of GCN layers was 
altered, and two layers, i.e., taking first and second-order grain neighbors into consideration, proved best. For 
a detailed assessment of the GCN-PCA model, the confusion matrix evaluated on the full data and the marked 
side of individual specimen P2_8 is presented in Table 2 and 3, respectively.

Table 1.  Performance of machine learning models predicting the formation of protrusions. The table 
compares machine learning approaches operating on the tabular data representation (balanced random forests, 
support vector machines, and multilayer perceptrons) with those using graph representation directly (graph 
convolutional network and graph isomorphism network). Both the best and mean performance of each model 
(from five random initializations) are presented. The left column in each block evaluates the models on the 
whole data set (aggregating across validation sets of all five folds), and the right column evaluates them only 
on grains from a single specimen side (named P2_8_marked) for which a CPFEM phenomenological model 
predicting Fatemi-Socie fatigue indicator parameter is available as a baseline. Some special cases of models 
were also presented—the GCN and BRF models trained using data transformed by principal component 
analysis (PCA) and the GCN model trained with binary cross entropy loss without any additional imbalance 
correction techniques. The values in bold indicate the best performance achieved per column.

Model

Best  F1-score Mean  F1-score

Complete data set P2_8 marked Complete data set P2_8 marked

CPFEM Fatemie-Socie − 0.25 − −

BRF 0.19 0.20 0.19±0.00 0.20±0.00

BRF-PCA 0.19 0.22 0.19±0.00 0.21±0.01

SVM 0.25 0.25 0.25±0.00 0.25±0.00

MLP 0.29 0.33 0.28±0.00 0.31±0.02

GCN 0.34 0.41 0.32±0.01 0.40±0.01

GCN-BCE 0.32 0.41 0.31±0.01 0.39±0.01

GCN-PCA 0.34 0.44 0.33±0.01 0.40±0.03

GIN 0.33 0.42 0.32±0.01 0.38±0.03

Table 2.  The confusion matrix of the GCN-PCA model for binary classification on the complete data set.

Prediction

Negative Positive

Actual
Negative 6844 478 

Positive 154 157 

Table 3.  The confusion matrix of the GCN-PCA model for binary classification on P2_8 marked.

Prediction

Negative Positive

Actual
Negative 830 72 

Positive 19 30 
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A slightly less, but similar, improvement is made by the GIN model as well. In fact, except for the BRF model, 
all models outperform the baseline. The BRF model learns a decision boundary that culminates in many false 
positives, as shown in the confusion matrix in Supplementary Table 3. Consequently, the precision metric of the 
BRF model (see supplementary data) is unsatisfactory and the  F1-score amounts to 0.19, see Table 1.

It is noteworthy that the results of the graph models differ significantly when individual specimens are 
considered. This is observable in Table 1 where P2_8 exhibits a well above average  F1-score. In contrast, the 
conventional ML models perform similarly on P2_8 and the full data set. This characteristic is addressed in 
detail in the supplementary note 7.

For a better assessment of learned model tendencies, the confusion matrix elements encoded as symbols are 
plotted onto the corresponding grain centroid in the grain map depicted in Fig. 2a. It can be observed that many 
small grains are correctly classified as undamaged by the GCN-PCA model. However, in the tapered region, there 
are also small damaged grains identified by the GCN-PCA model as such. Notably, the erroneous predictions 
are concentrated around the tapered region exposed to high load, cf. Fig. 2a and c. This applies especially to the 
specimen edge within the tapered region where a high emergence of false positives can be observed. At the edge, 

Figure 2.  Best model (GCN-PCA) prediction performance visualized and contrasted with the worst model 
(BRF) performance (see Table 1) by overlaying on inverse pole figure color-coded microstructure maps of P2_8 
specimen marked side. Subfigure (a) shows the performance of the GCN-PCA. Here, at each grain’s centroid, a 
symbol is plotted that classifies the model’s prediction in terms of confusion matrix elements. The “square” and 
“star” symbols indicate damaged and undamaged grains, respectively. A green colored symbol indicates that the 
model’s prediction for that grain is correct (i.e., either true positive or true negative depending on the symbol), 
and a red symbol indicates a wrong prediction (i.e., false positives and negatives). Subfigure (b) contrasts the 
prediction performance of GCN-PCA from the BRF model. Here, the symbols denote the same GCN-PCA 
prediction states as in subfigure (a). Solid symbols represent those cases where GCN-PCA predicts correctly and 
BRF predicts wrong, and vice-versa for the open symbols. For all those grains that do not have a symbol plotted, 
both GCN-PCA and BRF make the same prediction. The reference direction of the inverse pole figure (IPF) is 
the specimen normal (ND) [001], and the IPF colormap is inlaid in subfigure (b). In subfigure (c), the specimen 
geometry-induced von Mises stress distribution is illustrated. The micron bar in subfigure (a) corresponds to 
200 µm.
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the global stress state is more complex and depends strongly on the local geometry which cannot be controlled 
perfectly during sample fabrication and subsequent polishing. However, the classifier does not predict all grains 
in this region to be damaged. In contrast, the BRF model predicts all larger grains within the tapered section 
indiscriminately to contain damage, see Supplementary Figure 1.

In order to analyze the difference between the GCN-PCA and the BRF models, their predictions are com-
pared. Whenever their prediction differs, a symbol is displayed at the grain centroid in Fig. 2b. In this case, solid 
symbols point to grains where GCN-PCA predicted correctly and BRF predicted wrong, and vice-versa for 
open symbols. It is notable that the models differ predominantly in the homogeneously loaded region but not 
immediately at the specimen edge (no symbols are plotted at the left and right of Fig. 2b). Moreover, in regions 
of low von Mises stress (top and bottom of Fig. 2b), both models agree. The learned decision boundary of the 
GCN-PCA significantly reduces the false positive predictions as opposed to the BRF model. The GCN-PCA 
model accounts better for the inherent imbalance of slip marking formation.

Discussion
Large enterprises in the manufacturing sector contemplate using microstructure-sensitive crystal plasticity 
simulations and derived fatigue indicator parameter metrics in component design to predict service life and 
its  scatter24,25. Provided a crack initiation position, phenomenological CPFE models were shown to predict the 
paths in which short cracks traverse through the microstructure decently  well25. However, the hot spots in the 
mechanical fields or derived FIP metrics typically do not mirror experimentally observed damage or crack 
initiation  sites23. To date, such models fail in practice to predict the service life and specifically its scatter in the 
high-cycle fatigue regime accurately since the microstructural driving forces of crack initiation are not captured 
comprehensively. In fact, a quantitative understanding of which combination of microstructural features consti-
tutes a potential damage initiation site is largely missing.

In this work, we propose an alternative approach of using statistical GNN models with high expressivity to 
model microstructures and their plastic response to cyclic loading. Such models provide an adequate inductive 
bias to learn interactions between adjacent grains and relevant microstructural descriptors. Once such models 
are well trained, interpretability techniques could be applied to gauge what kind of features the model depends 
on for making predictions. While CPFEM is limited in domain size, GNN models at inference time can, in prin-
ciple, produce predictions at the component scale. This permits a thorough analysis of service life scatter, where 
an engineer is not limited to the simulation of a few statistical volume elements. Moreover, GNN operating on 
graphs that are non-Euclidean representations implies that multiscale aspects such as grain boundary segrega-
tion, pores, and similar can be taken into account more efficiently than in mesh or image-based representations.

The results showed that graph-based models outperform the phenomenological CPFEM baseline and con-
ventional machine learning techniques by large margins when predicting damage locations on this data set. It 
can be noticed that the absolute value of the  F1-score, even for the best models, only reaches up to 0.34. However, 
the  F1-score does not look at how well the model predicts undamaged grains. The balanced accuracy metric, 
on the other hand, considers both the labels and the imbalance of the data set. Our best GCN model has a bal-
anced accuracy score of 0.72. Especially considering the complexity of the prediction task, incomplete feature 
space, and inherent data scarcity, the graph convolutional classifier achieved a very promising performance. 
Generalizability studies were not conducted due to the limited quantity and the narrow domain (single alloy and 
heat treatment) of the available data. Techniques such as unsupervised domain adaptation (which removes the 
need for additional supervisory annotation of data) that performed well on the image-based representation of 
 microstructures26 could potentially be utilized also for the graph models once compatible data sets are available. 
To facilitate better generalization of the GNN models to similar materials and loading conditions, combined 
GNN-CPFEM frameworks could be designed. In the applied CPFEM modeling, the cause of discrepancy to the 
experimental data cannot be pinpointed with the available experimental  information23. Whether the error origi-
nates from the microstructure reconstruction, constitutive modeling, FIP damage modeling, or a combination 
thereof can potentially be identified by conducting feature sensitivity studies on quasi-raw data (crystallographic 
orientations) and processed features from FIP. Moreover, the applied and other typical CPFE formulations do not 
incorporate the minuscule subsurface information that is contained within Kikuchi patterns and derived quality 
metrics of 2D EBSD scans. In contrast to CPFE models, ML approaches provide more flexibility in incorporating 
such important features without the need for major adjustments in constitutive modeling.

In the GCN-PCA model, the erroneous predictions are often clustered and a large portion is localized to the 
specimen edge in the tapered region where, assuming a rectangular specimen cross-section, the highest macro-
scopic stresses occur (cf. Fig. 2a and the stress distribution inlay Fig. 2c). These false predictions by the model 
can be ascribed primarily to the stress state as well as damage accumulation mechanisms active at these regions 
being distinct due to a number of potential reasons, including specimen edge rounding, sidewall topography, and 
residual heat-affected zone from laser-cutting. Additionally, much of that information is not captured in the data 
set, and on top of it, edge grains are underrepresented in the data which makes it difficult for the model to learn.

The graph models improve upon the conventional ML models in the homogeneously and highly loaded 
region, cf. Fig. 2b and the orange band in the inlay Fig. 2c. Within this region, the macroscopic stress state is 
not significantly altered such that microstructural aspects dictate whether damage occurs or not. This indicates 
that the graph-based approaches manage to learn more second-order relations and nuanced correlations from 
the data.

The learned relations can be further explored by determining how the model makes its prediction. For graph 
models, this can be addressed with interpretability techniques such as integrated gradients (IG) attribution, as 
introduced in "Interpretability of machine learning models" section. The IG attribution computes an attribu-
tion value for the input graph (defined by feature matrix X and adjacency matrix A) by making interpolations 
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of the graph from a null graph and accumulating gradients from each of those interpolations for each element 
of X and A relative to a prediction. IG attributions satisfy several axioms that are considered desirable for an 
interpretability technique, including the completeness axiom which states that sum of IG value of input features 
add up to the model’s prediction score for that  input27. Figure 3 shows an example of IG attribution of the GCN 
model from Table 1 and compares it with the mean decrease in impurity (MDI) feature importance of the BRF 
model. The IG attribution for a grain node shows us relatively how important the features of that specific grain 
are for predicting damage to the target grain. The relative importance of an edge for the target node’s prediction 
can be observed from the IG attribution of an edge. Relative feature importance charts were made from the IG 
attributions by aggregating them for a particular feature across all nodes (column-wise sum of X). In Fig. 3c,d, 
such charts for features were calculated from IG attributions relative to either a single grain’s prediction or 
accumulating from all true positive predictions in the data set. As an ML baseline comparison, the MDI feature 
importance for the BRF model is computed by looking at how much each feature contributes to reducing the 

Figure 3.  Images showing interpretability analysis results of the GCN model from Table 1 using integrated 
gradients (IG) attribution (a)–(d) and the BRF model using the mean decrease in impurity (MDI) metric (e). 
Subfigure (a) shows a damaged target grain (#4641) predicted correctly by the GCN model. The microstructure 
graph and damage (white) are overlayed on the IPF-colored microstructure image. The more opaque the nodes 
and the edges are, the higher their IG attribution value and thus the higher their importance for the prediction 
outcome. To complement this, subfigure (b) shows the secondary electron SEM image of the damage instance. 
Subfigure (c) shows the importance of specific features for making the particular prediction in subfigure (a). In 
contrast, in (d) the joint importance aggregated over all true positive instances in the data set is displayed. The 
color code and feature symbols for the bar plots in subfigures (c)–(e) refers to the feature taxonomy introduced 
in Table 4. The color code in (c)–(e) refers to the type of the feature: gold refers to “morphological and 
topological features”, cyan refers to “crystallographic orientation, misorientation and quality-related features”, 
and red refers to “micromechanical and loading-related features. Similarly, the cross and check marks are 
transferred from Table 4 to indicate features that utilize information on adjacent grains.
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impurity of nodes across all trees in the BRF model ("Interpretability of machine learning models" section). The 
features computed for each grain node are summarized in Table 4.

In Fig. 3a, the grains in the direct vicinity of the damage instance are deemed very important by the model 
(high opacity). The same applies to the edges which connect the grains involved in damage evolution. This 

Table 4.  Engineered features containing information on morphology, crystallography, and loading extracted 
from the multimodal data. The adjacent grain (AG) column, specifically the green check marks, indicates the 
features which containinformation about neighbor grains. All features marked with an asterisk are computed 
in different ways, using either thegrain-mean crystallographic orientations or a statistical measure of the 
orientation distribution within the target grain (i.e.,considering the EBSD orientation samples contributing to 
the grain individually).

Feature symbol Description AG

Morphological and topological features

Ap , Aµm Grain area in number of pixel and physical units (μm2)

LeqR , LeqP Radius, perimeter, of equivalent area circle fitted to the target grain

AmaxNeigh , Aneigh Max. and mean pixel area of adjoining grains

Nneigh Number of neighbor grains

LP Perimeter of grain boundary (inner boundaries are neglected)

AR Aspect ratio of an equivalent area ellipse fitted to the grain

LmajAx Major axis length of an equivalent area ellipse fitted to the grain

LminAx Minor axis length equivalent area ellipse fitted to the grain

γ Orientation angle of an equivalent area ellipse fitted to the grain

Bsb ,BimEdge Booleans indicating specimen boundary grains and grains at edges of the image respectively

Npore Number of surface pores in grain

LporeSum/poreMax Accumulated pore diameter and maximum pore diameter within a grain

LsPt∗ Max. line intersection grain size in direction of maximally-loaded slip plane trace

Xcen ,Ycen Centroid X and Y positions of the grain

XiPos∗ ,YiPos∗ Positions of the intersection between the GB and slip plane trace

tspecimen Thickness of the specimen

Crystallographic orientation, misorientation and quality-related features

φ1 , � , φ2 Mean Bunge Euler angles

�gmin/max ,�g Min, max, and mean intergranular disorientation angle to any neighbor grain

GOS Intragranular angular disorientation spread from average orientation, see supplementary equa-
tion 6

KAM Grain-averaged kernel average misorientation, see supplementary equation 5

Rtilt
Proportion of tilt boundary candidates ( < 15◦ angular deviation between GB segment trace and 
2D GB crystallographic misorientation axis) with respect to overall grain boundary length

Rtwin Proportion of � 3 twin GB trace segments with respect to overall grain boundary length

CI Grain-averaged EBSD confidence  index42

IQ Grain-averaged EBSD image  quality43

Micromechanical and loading-related features

C Stiffness of a grain in the specimen axis direction

�Cmin/max , �C Min, max, and mean of specimen axis direction stiffness difference between adjacent grains

σvMmax , σvM Grain mean and max continuum von Mises stress (FEM)

mmax∗ Grain max of Schmid factors assuming axial tensile load

m′

max/mean∗ Slip transmission factor considering alignment of slip plane normal and slip  direction44

m′

ij∗
Slip transmission factor analogous to m′ but considering the crystallographic orientations at the 
GB of the position ( XiPos ,YiPos)

MigMax/Min∗ ,Mig∗ Intergranular misorientation crack  factor30

fres , σamp Specimen initial resonant frequency and load amplitude applied during bending test
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indicates that the model learns the patterns in the features that are responsible for damage evolution. Also, the 
lower involvement of distant grains, e.g., grain ’5447’ or ’4485’, is in accordance with the understanding of ranges 
of elastic and plastic fields. When assessing the features that the model considers important for this particular 
prediction, see Fig. 3c, the crystallographic orientation ( φ2 , φ1 ), σvM  , slip transmission factors ( m′

∗
 ), the grain 

size ( L∗ ), and Bsb rank among the most important ones. This is plausible as orientations dictate the propensity 
for dislocation slip, the stress is elevated in the specimen boundary region, slip transmission affects whether the 
slip bands and slip markings form at grain boundaries, and the grain size affects dislocation interactions and 
mobility. The disorientation of neighboring grains affects the elastic misfit resulting in a specific local stress state 
and the barrier effect of the grain boundary. These two are mechanistically not at all related and affect the damage 
formation very differently. This motivates introducing features dedicated to specific mechanisms such as slip 
transmission factors. The boolean designating specimen boundary grains Bsb ranking among the most important 
features implies that the model learns to treat edge grains and other surface grains differently. The aggregated 
feature importances for all positive instances in Fig. 3d show a similar trend. Additionally, the minimum and 
maximum intergranular disorientation ( �g∗ ) as well as intragranular misorientations represented through KAM 
are considered important. These features determine the effective grain size and contain information on the 
geometrically-necessary dislocation density. Note that the von Mises stress does not occur as a discriminative 
feature for the true positive instances. Presumably, this can be traced back to the damage instances and conse-
quentially true positives being located mostly in the high-loaded regions, hence exhibiting small σvM variance.

In the BRF case, see Fig. 3e, it is evident that almost only grain size-related features show up as important 
features for discriminating damaged and undamaged grain instances. This is in line with the prediction map in 
Supplementary Figure 1. Seemingly, the features that the classifier learned to depend on do not capture the cause 
for some small grains developing protrusions. These features are rather one-sided and not as well-balanced across 
many supposedly relevant descriptors as in the case of the GCN model. Aside from grain morphology features, 
only the directional stiffness C and σvMmax show up, while grain boundary descriptors are completely absent. 
However, interactions between microtextural and grain boundary descriptors are known to play an important 
role in an HCF  setting28. Aside from the missing contextual information in the case of tabular representations, 
the crystallographic aspects not being learned can be partly ascribed to the fact that during the construction of 
the individual trees of the BRF bagging classifier, the feature grouping (e.g., Euler angles) was not respected in 
the feature subsets. Despite a few of the damage instances being localized to pores, pore morphology-related 
features are underrepresented. This can probably be ascribed to the neglect of the exact pore location. Instead, 
pore features are extracted for the whole grain while protrusions only cover small portions of grains. Only in 
Fig. 3c, the maximum pore diameter within the grain ranks among the important features.

Figure 3c,d shows some of the features that are deemed important by the best GCN model for making good 
predictions. But it doesn’t tell us how a feature’s value influences the model’s prediction—whether it attenuates 
or enhances prediction as damaged. To analyze how the feature values affect the prediction, we create depend-
ence plots, where we can compare the feature value of a particular grain with the IG value attributed to that 
particular feature in the grain. Specifically, we display a pair of features and color code it with the sum of their 
IG values (Fig. 4), which would give us the marginal importance of the feature pairs (since IG attributions satisfy 
the completeness axiom, as described in "Interpretability of machine learning models" section). Dashed lines 

Figure 4.  Images showing how different features affect interpretability prediction of damage by an ML model 
on an average. The plots are calculated for the GCN model from Table 1 using integrated gradients (IG) 
attribution. Subfigure (a) shows the importance of a pair of features (max generalized Schmid factor in the grain 
( mmaxPmax ) and Young’s modulus of the grain in the axial direction (C)) plotted over their value. Each point 
denotes a grain with the corresponding feature values. The color of the point is calculated as the sum of the 
average IG attribution value for the specific features across all true positive instances. Subfigure (b) shows the 
respective values for the feature pair mean GB crack factor ( Mig  ) and mean disorientation of the grain across 
neighbor grains ( �g).
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in the figure show imagined linear decision boundaries separating points that support (IG value > 0) or oppose 
(IG value < 0) prediction as damage (on an average).

Figure 4 shows dependence plots for two pairs of features that are deemed important by the earlier inter-
pretability analysis. Higher values of Schmid factor mean higher critically resolved shear stress on a slip system, 
which promotes dislocation activity and slip marking formation. This tendency of higher values of Schmid 
factor encouraging damage initiation prediction of the grain and its neighborhood is clearly visible in Fig. 4a. 
Due to the strain-controlled nature of the fatigue experiments we conducted, those grains with high stiffness in 
the specimen axis direction are exposed to higher stresses. Such grains are more likely to be damaged and this 
tendency can also be observed in the subfigure a, where grains with high stiffness can be seen promoting damage 
prediction even when exhibiting smaller max. Schmid factors. Damage initiation in grains with higher stiffness 
also depends on the stiffness of grains in its neighborhood—stiffer grains surrounded by compliant grains carry 
more load and are more likely to initiate  damage29. Such patterns could also be analyzed using GNNs and such 
interpretability techniques but is considered out of scope of the presented work. Further, in Figure 4b we can 
see that higher values of GB crack initiation  factor30 and mean disorientation promote the prediction of damage. 
While the former was originally proposed as an intergranular crack initiation criterion, it also holds informa-
tion on the plastic incompatibility between grains and local grain boundary orientation. Thus, the formulation 
of Mig  can be interpreted to contain unique information on dislocation impingement on the grain boundary. 
Considering the irregular grain shapes and the localization of slip markings to specific grain boundary segments 
(see Fig. 1b,c), further justify the importance of Mig .

An important aspect to consider when selecting GNN variants is whether they can model relevant interactions 
between features of neighboring nodes, which is determined mainly by the message passing and aggregation 
phases ("Graph-based machine learning approaches" section). Such interactions can be very useful for predict-
ing damage from microtexture, for instance, the crystallographic orientations of two adjacent grains determine 
their compatibility in terms of slip transmission. However, the message passing phase of both GCN and GIN 
(see Table 5) aggregates features from neighbors before computing any feature combinations, thus ignoring the 
possible interactions between features of grain pairs. In literature, different approaches to learning sophisticated 
feature interaction across adjacent nodes have been  proposed31–33, which might be interesting to model micro-
structural deformation. The GCN performing slightly better than the GIN, see Table 1 might also be linked to 
the aggregation of messages across neighbor grains. The GIN model assumes a simple summation of all involved 
neighbor’s hidden state representations. In the case of low or high node degrees, this form of aggregation can 
cause vanishing or exploding gradient problems and, therefore, unstable training. This is especially problematic 
in microstructure graphs like ours with high grain size and morphology variance, where there is a large range 
of node degrees, i.e., where some grains have only a single neighbor while others have twelve. At the same time, 
we consider the weighted average summation in GCNs (see Table 5) as non-ideal because it artificially increases 
the importance of low-degree nodes, typically corresponding to smaller grains with fewer neighbors. Such an 
aggregation scheme could also potentially make similar embeddings for neighbor grains, which could be the 
reason why we observe clusters of errors in Fig. 2. GNN literature shows the merits of using multiple aggregators 
over single aggregators, and scalars to attenuate or enhance  messages34, which looks like a promising alterna-
tive. Graph attention networks (GATs) could also be an interesting choice which is inspired by the usage of 
attention mechanisms in computer vision and natural language  processing35. These models perform a weighted 
sum of messages from neighbor nodes in their aggregation step, where these weights, in contrast to GCN, can 
be learned, i.e., different neighbor nodes can have different importance when aggregating messages from them. 
GNN variants with more adequate inductive bias and information aggregation for microstructure graphs will 
be the subject of future investigations. However, as initial trials when we tried out a few of the promising GNN 
models discussed above (GAT 35, Graph  Network31 and  PNA34), we observed that contrary to our anticipation, 
they do not improve the damage prediction performance on our data set. This leads us to think that in our 
specific case, we might be restricted more by other factors. One candidate is the annotation noise that might be 
introduced during the annotation process due to the grain-level abstraction. But more dominant factors could 
be the lack of some critical information in the data and/or some essential information that is left hidden due to 
the simplified data representation.

A factor detrimental to all utilized models is the absence of three-dimensional information on the internal 
distribution of MnS inclusions in our experimental data. Moreover, subsurface microtexture information is 
limited to the electron interaction volume during the EBSD measurement and is thus minuscule. However, even 
irrespective of missing subsurface information, the graph, and conventional ML approaches did not consider all 
available contextual information. Pores and inclusions not being modeled explicitly as nodes in the structural 
graphs result in some spatial information loss during graph abstraction. Moreover, grain boundary properties 
such as the maximum disorientation �gmax or the maximum Young’s modulus difference across grain boundaries 
�Cmax to any neighbor grain are considered as node features, but their spatial localization is discarded. Graph 
models, as opposed to conventional ones, can extract and incorporate this information to some extent from 
neighbor node features. Virtually all protrusions were observed not to cover the whole grain but rather be local-
ized at specific grain boundaries, see Fig. 1a, b and c. This emphasizes the importance of spatial information and 
of the comprehensive description of individual grain boundaries. Especially in the case of irregular grain shapes, 
detailed morphological information of grain ensembles, e.g., acute grain boundaries, can be comparatively more 
relevant but is not provided to the graph models. The damage being localized to specific grain boundaries implies 
that not all neighbor grains are equally important to determine whether the target grain will contain a protru-
sion. The information on damage localization within a grain is experimentally available and can for instance be 
incorporated during training by assigning labels to edges, i.e. grain boundaries, rather than nodes or distinct 
graph representations.
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The graph modeled in this study is homogeneous and composed of unlabeled and undirected edges, which is 
an under representation of the domain knowledge about fatigue damage formation. For instance, entities such 
as grain boundaries, triple points, pores, and inclusions, along with their properties, can be modeled explicitly 
within a heterogeneous structural graph to preserve spatial and structural information better. There are GNN 
variants that can handle this enriched information, such as heterogeneous deep graph convolutional network 
(HDGCN)36. In materials research, a heterogeneous representation of microstructure and application of het-
erogeneous GNN variants has been demonstrated for the prediction of continuum properties, including tensile 
strength and Young’s  modulus37. Relational graph convolutional network (RGCN)38 is an extension of GCN, 
where a learnable parameter exists for each distinct relation type, thus making the node hidden state update 
dependent on the relation type. Extending on this, the structural graph can be further semantically augmented 
by infusing factual knowledge and thereby converting the data representation into a knowledge graph. Relations 
that could be modeled in this context are known connections and interactions between individual features, the 
influence of grain size on the local strengthening behavior, or even properties of individual grain boundary types 
known from bicrystal  tests39. Knowledge graph embeddings (KGE) can then be learned using existing methods 
as surveyed by Gesese et alia40. Some of these methods take literal and knowledge incorporated in triples jointly 
into account. One successful example of the application of the KGE models is on scholarly  data41, which utilizes 
these models to perform the task of author name disambiguation.

Few damage instances exist in the data set where slip markings propagated through a grain boundary, see 
Fig. 1b. Here, coupling between grains is evident and puts the separate treatment of grain instances in the tabular 
approach into question. The approach outlined here assumes that damage instances are independent of each 
other and can be inferred solely from the initial state of the local grain environment. The mutual interference 
between protrusion instances is deemed mostly negligible due to the HCF loading and the relevant specimen 
and microstructure scales.

To represent the full history of failure, it will be necessary to follow the physical damage process of damage 
accumulation, micro-crack initiation, microstructural and physical short crack growth, followed by long crack 
growth. The GNN-based initial damage prediction discussed here needs to be coupled with other graph ML-
based modeling approaches to predict crack initiation and short crack growth. The fact that HCF cracks initiate 
even more infrequently than slip markings form, might necessitate utilizing physics-informed ML approaches 
or supplementing synthetic data from knowledge-based simulations to reduce the experimental training data 
demand. We argue that having distinct models for the different fatigue stages is important to account for their 
fundamentally different underlying mechanisms and statistics. The same potentially applies to protrusions that 
emerged at vastly different cycle numbers (primary and secondary protrusions) or at different defects (pores 
or grain boundaries). Such different damage instances can be distinguished efficiently by the data-processing 
workflow outlined in our previous  work21 through the post-processing of the in-situ image series and the spatially 
correlated high-resolution pore information, respectively.

Conclusions
Considering the complexity of predicting grain-wise cyclic damage accumulation, the prediction performance is 
very promising. The graph models were trained directly on the graph representations of experimental microstruc-
tures. They outperform standard machine learning models and the phenomenological crystal plasticity model 
substantially and also learn more nuanced relations. Interpretability techniques such as integrated gradients 
enable insights into which features are considered relevant and even permit the detailed assessment of individual 
interesting grain ensembles. Integrated gradient attribution reveals that graph convolutional networks learn a 
comparatively balanced representation taking into account all feature types (morphological, crystallographic, 
micromechanical, and grain boundary-related). The dependence plots give insights into how feature values 
affect damage prediction and indicate mechanistically plausible relations that are aligned with current fatigue 
literature. For instance, such analyses suggested that high values of the GB crack initiation  metric30 also promote 
the mechanistically-distinct slip marking formation.

At the same time, the results presented here also indicate that the feature set might not be completely discrimi-
native for the problem at hand, especially at the lower loading amplitudes. Indeed, information on subsurface 
microstructure and volume defects, known to be present in the material, are not captured in the features. Moreo-
ver, the feature quality and hence a meticulous microstructure reconstruction is crucial but might not be adequate 
for grains under lower loading conditions. Aside from feature completeness and quality, the data quantity is still 
a limiting factor. To tackle all aforementioned points, a multimodal X-ray diffraction contrast tomography and 
phase-contrast computed tomography data set is being acquired. Such a data set containing three-dimensional 
microtexture and volume defect information will then enable a thorough analysis of microstructural driving 
forces utilizing the combination of powerful graph-based models and appropriate interpretability techniques. 
Compared to the common statistical techniques, this approach could bring about a considerable improvement 
in analyzing microstructure-based predictions, potentially finding elusive patterns that are yet unknown to the 
fatigue community.

Materials and methods
Data set generation. The data from which the tabular and graph representations are derived was acquired 
by several measurement techniques. A detailed description of the employed characterization and its process 
parameters is outlined in Durmaz et al.21. This section presents a summary of the data extraction process.

The investigated material is high chromium alloyed EN 1.4003 ferritic steel. In terms of chromium content, 
it exceeds the solubility limit in iron. From etched longitudinal and cross-sections, manganese sulfide type 
II and III inclusions and finely distributed precipitates, as well as decorated grain boundaries, are observed. 
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Presumably, Zener grain boundary pinning at aforementioned particles during grain growth causes irregular 
grain shapes, see Fig. 1. From a steel rod, mesoscale planar fatigue specimens were prepared through a series of 
fabrication techniques comprising wire discharge machining, laser cutting, and a series of metallographic grind-
ing, electropolishing, and polishing steps with a colloidal silica surface finish. Prior to fatigue, the undisturbed 
microstructure of the fatigue specimens’ surfaces was investigated by electron backscatter diffraction (EBSD). 
Along those lines, a tile image series capturing the whole highly loaded surface with topography-sensitive imaging 
(Everhard–Thornley detector) in scanning electron microscopy (SEM) was acquired and stitched subsequently. 
This modality acted as an undeformed reference in which image distortions are largely absent and allowed for 
preserving high-resolution features while facilitating large scan areas. Analogously, but at slightly higher magnifi-
cation, after fatigue, such a stitch image routine was repeated to capture local damage formation events. This data 
was then passed to a convolutional neural network trained to segment damage instances, including protrusion 
slip markings and  cracks2 as classes to generate a semantic damage mask, followed by performing some manual 
corrections on it. Fatigue testing in the HCF regime was performed through bending resonant fatigue testing 
with mesoscale specimens. Ascribing to the testing concept and its pronounced sensitivity, early fatigue states 
can be characterized including the formation of surface slip markings. Such slip markings within grains occurred 
predominantly in the surroundings of grain boundaries as depicted in Fig. 1a,b and c.

The data utilized in this study originate from four specimens that were exposed to a distinct cyclic load cor-
responding to von Mises stress amplitudes ranging from 240 to 262 MPa with a load ratio of R =−1 . All afore-
mentioned preliminary microscopy techniques were performed on both sides of the planar specimens in order to 
increase the data quantity. Due to the scarcity of common image features of the highly polished specimen surfaces 
in the distinct modalities, multimodal registration necessitates the manual selection of point correspondences. 
Pores and residual surface contamination acted as characteristic features which were visible in the different 
modalities. A multi-stage registration procedure was followed where mostly linear similarity transformations 
were applied to the image data. The EBSD data posed an exception for which an additional elastic transformation 
was performed to correct for its inherent spatial distortion.

The multimodal data described above was represented as a graph G = (V ,E) , where each EBSD-reconstructed 
grain is abstracted as a node v ∈ V  . A set of features as described in ’Feature engineering” Section were com-
puted for each grain ( xv∀ v ) and are stacked vertically to build a feature matrix X. The adjacency information 
of grains from EBSD data was used to connect grain nodes with their neighbors through edges E. The edges are 
represented as an adjacency matrix A. This results in an undirected homogeneous graph, i.e., single node type 
and relation type. The microstructural graph data set, in the following referred to as a structural graph, could 
also be simplified into a tabular representation with only the grain features X as inputs and the corresponding 
damage labels as output. Such a representation lets us use conventional machine learning techniques which can 
be then compared with graph-based approaches. Grain-wise damage information was considered as ground 
truth for supervised training and is represented as a binary array y. Owing to minor residual misalignment after 
registration and the tendency of damage instances to be situated immediately at grain boundaries, the damage 
instances’ assignment to individual grains was corrected by visually inspecting the SEM image after fatigue. 
Whenever a part of a slip marking extended into a grain, it was considered damaged.

The complete data set derived from the multimodal data contains a total number of 7633 grains when discard-
ing individual microtwins. Instead, the proportion of twin boundary length contributing to grain was considered 
as a feature. Owing to the HCF loading, only 311 grains among all grains contained surface slip markings. All 
kinds of protrusions are taken into account, irrespective of their time of emergence. This includes also protru-
sions that emerged at pores. Microstructurally short cracks and surrounding crack-induced plasticity are not 
considered in this task. Hence, the data set comprises a rather pronounced inherent imbalance where only 
4.25% of the grains exhibit fatigue slip markings. An underlying assumption is that in the HCF regime and the 
grain sizes of the material at hand, the localized damage instances, and both specimen sides are mechanically 
decoupled from each other.

Feature engineering. In order to predict the emergence of protrusions within grains by learning an ML 
classifier, a set of descriptive features needs to be computed. Since environmental, as well as surface topography 
influence factors, were largely suppressed in this study, and only one material was investigated in the context 
of fatigue, the focus was placed on capturing microstructural descriptors and mechanical loading comprehen-
sively. This entails microstructure morphology, crystallography (microtexture), and pore defect attributes as 
well as hybrid features that couple mechanical load with microstructure. A list and rationale for the features are 
provided in Table 4 and “Discussion” Section, respectively. For instance, the grain size is an important feature 
as it affects the mean free path of dislocations in the absence of precipitates and, therefore, the local strengthen-
ing behavior. Further features are considered, which are slightly altered permutations and variants of the ones 
in Table 4. In total, 120 grain-level descriptors were considered to capture various aspects of the microstruc-
ture, pore defect distribution, and loading. However, some of these engineered features are highly correlated. 
In particular, this applies to the features addressing grain morphology. Since some features considered not only 
individual grains but also differences with respect to adjacent grains, some contextual information is fed in dur-
ing model construction. All features were imputed, i.e., missing values were filled by applying the mean value. 
Subsequently, all features were standardized to remove the mean and scale to a variance of unity.

The set of features is extracted using an automated Matlab routine including different functionalities of the 
image processing and computer vision toolbox in combination with MTEX, a third-party toolbox providing a 
variety of crystallographic  routines45. Before feeding these features to ML approaches, various feature selection 
or dimensionality reduction techniques could be beneficial. In our case, principal component analysis (PCA)46 
was applied optionally. PCA is arguably the de facto standard for linear dimensionality reduction. The approach 
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projects the features into a selected few eigenvectors of the data set (called principal components). The principal 
components are chosen based on the eigenvalues, ensuring that we select a smaller subset of directions that could 
capture most of the data sets’ variance.

Graph-based machine learning approaches. In our graph data set, grains are represented through 
nodes where nodes of adjoining grains are connected by binary edges as described in “Data set generation” 
Section. Each grain node has a set of features computed for describing itself and sometimes its environment, as 
presented in “Feature engineering” Section. For the supervised training of ML algorithms, the damage annota-
tion of each grain node is used. The graph data set presented is undirected and homogeneous.

Graph neural networks are a class of ML models designed for using data represented as graphs. In a nut-
shell, each layer of a GNN updates a node’s representation (called hidden state representation, hlv after layer l) 
by considering both its previous state as well as information from its neighborhood. The initially hidden state 
representation of all nodes is the input features, xv . There are numerous types of GNNs, which vary in how the 
so-called message passing and update phases are defined. Many of these GNN types could be generalized under a 
message-passing neural network (MPNN) framework, described in Gilmer et al.10. An MPNN layer describes the 
update of a target node representation within both phases. During the message passing phase (parameterized by 
the message function Ml ), each node in the neighborhood of a target node v, u ∈ N(v) , and optionally the target 
node itself creates a message. These messages are derived from the previously hidden state representations of the 
corresponding nodes hlu∀u ∈ N(v) and hlv , and these messages are then aggregated in a permutation-equivariant 
way. Subsequently, in the update phase (defined by the update function Ul ), the aggregated message ( ml+1

v  ) is 
used for updating the hidden state representation of the target node. After the two phases of an MPNN layer, 
each node in the graph is converted into an embedding that contains information about its neighborhood. When 
N such MPNN layers are applied, then each node acquires information from nodes that are N hops away. These 
embeddings are then used further to get the desired output. An example of a single MPNN layer updating the 
hidden state representation of the central node in Fig. 1b is illustrated in Fig. 5. For an undirected homogeneous 
graph, an MPNN update of the hidden state representation of a node v can be written as follows (note that we 
assume element-wise summation of messages as the aggregation operation):

(1)ml+1
v =

∑

u∈N(v)

Ml

(

hlv , h
l
u

)

Figure 5.  Figure illustrating how features are propagated in a single layer of GNN for a target node using the 
MPNN framework. The example here corresponds to the microstructure graph from Fig. 1d. The micron bar in 
the Fig. corresponds to 50 µm.

Table 5.  Graph convolutional network (GCN) and graph isomorphism network (GIN) defined as per MPNN 
framework described in 1 and 2.

Model Ml Ul

GCN cuv h
l
u , where cuv = (deg(v)deg(u))−

1
2 Av,u ReLU(Wlml+1

v )

GIN hlu MLP
(

(1+ ǫ)hlv +ml+1
v

)
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In this study, we consider the GNN types GCN and GIN. They can be distinguished by their message and 
update functions, as shown in Table 5. In a GCN model, the message function is a fixed transformation that 
depends only on the graph connectivity, represented by the corresponding adjacency matrix element Av,u , and 
node degree (deg), i.e., the number of edges connected to a node. It is to be noted that a message is also made 
by the target node itself. Also, each message only considers the hidden state representation of the node that’s 
generating it. The aggregated messages are then used to update the target node’s hidden representation using a 
trainable matrix Wl . It can be noted that this weight matrix is shared across all nodes in the same GCN layer. 
Meanwhile, in a GIN model, the update function uses a more expressive MLP to update the node features based 
on aggregated messages. However, it is to be noted that in GIN the messages themselves are just the previous 
hidden layer representations of the neighbor nodes. Both GCN and GIN have an inductive bias that treats features 
of the immediate neighbor nodes as more important than ones that are far apart.

We employed a transductive training setting in our experiments. In this setting, both training and validation 
data will be seen by the model during training but only the labels of the training data will be provided. The trained 
model will then try to predict labels of the validation data during evaluation. The grain features were carefully 
checked to prevent information leakage between the training and validation set.

Interpretability of machine learning models. ML models can be understood and trusted better by 
the use of interpretability techniques that shed light on how the models make predictions. One of the very basic 
interpretability techniques is attribution which tells us how important particular parts of a specific input to an 
ML model are for predicting a particular output. Integrated gradients is one such attribution method and one of 
the recommended methods for graph neural  networks47. IG is presented by the authors as a technique that satis-
fies several of the axioms that are considered desirable for an interpretability technique—completeness, linearity, 
symmetry preservation, sensitivity, and implementation  invariance27.

IG attribution value is calculated for each input feature (pixel, voxel, text, value, etc.) with reference to a 
baseline. The baseline input is an input that represents an absence of an input signal provided to the model. 
Let F : R

n
→ [0, 1] be the deep learning model and x ∈ R

n be a particular input to the model and x′ ∈ R
n be 

the baseline input. Then IG can be calculated as the path integral of the gradients of F for the straight line path 
from x′ to x. In other words, we compute gradients at all points in the straight line connecting x′ and x, and then 
accumulate these gradients. The IG value for the i th dimension of an input x and baseline x′ is defined as follows:

In our specific case, we computed IG attributions separately for nodes and edges. For calculating node attribu-
tions, we used a baseline that has the same topology as the input graph. So, the difference between baseline and 
input was only in the node features. The node features were interpolated for the segments between a baseline 
and the input value at hand and gradients accumulated. Similarly, for the edges, we used a baseline that differed 
only in the topology from the input graph. The baselines for nodes and edges were chosen to be values that 
represent a complete absence of signals. For nodes, this could be approximated by the mean feature value in 
the data set. In our case, since we passed standardized features to the models, the mean value of all features was 
zero. Hence, we could use a null graph as the baseline, i.e., a graph with all feature values as zero but the same 
topology. For the edges, a complete absence of signal could be approximated by a graph with no edges, and this 
was the baseline we used. We used Gauss-Legendre integration to find the path integral and tuned the number 
of steps based on the convergence delta.

These IG attribution values could then be aggregated per node or per feature to compute node-wise as well 
as feature-wise IG attribution values. Thus using the IG attribution values, one can look at how important each 
node, edge, and specific feature dimensions are for the GNN model. We use the IG attribution functions from 
the Captum  library48.

Random forest models could also be made more interpretable by looking into the importance of different 
input features for the models. We used a metric called mean decrease in impurity (MDI)49, as implemented in 
scikit-learn50. The MDI score is calculated for each feature by taking a weighted average of the decrease in the 
impurity measure across all nodes in all the decision trees. The probability of reaching a node was considered as 
the weight while averaging. The impurity metric describes the homogeneity of the labels at a node in the decision 
tree, and during training of a random forest, a split is found for each node based on those features which decrease 
the impurity of that node the most. We used entropy as the impurity measure when training BRF models.

Data availability
The tabular and graph data sets generated and analyzed for this study can be found at http:// dx. doi. org/ 10. 24406/ 
forda tis/ 248.

Code availability
The codes used in this study are available from the authors upon reasonable request.
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